

Denison Mines (USA) Corp. 1050 17th Street, Suite 950 Denver, CO 80265 USA

Tel : 303 628-7798 Fax : 303 389-4125

www.denisonmines.com

Sent VIA Federal Express

May 20, 2011

Mr. Rusty Lundberg Co-Executive Secretary Utah Water Quality Board Utah Department of Environmental Quality 195 North 1950 West P.O. Box 144820 Salt Lake City, UT 84114-4820

Re: Transmittal of 1st Quarter 2011 Routine Chloroform Monitoring Report UDEQ Docket No. UGQ-20-01- White Mesa Uranium Mill

Dear Mr. Lundberg:

Enclosed are two copies of the White Mesa Uranium Mill Chloroform Monitoring Report for the 1st Quarter of 2011 as required by the Notice of Violation and Groundwater Corrective Action Order, UDEQ Docket No. UGQ-20-01 as well as two CDs each containing a word searchable electronic copy of the report.

If you should have any questions regarding this report please contact me.

Yours very truly,

tickle

DENISON MINES (USA) CORP. Jo Ann Tischler Director, Compliance and Permitting

CC: Ron F. Hochstein David C. Frydenlund Harold R. Roberts David E. Turk Kathy Weinel Central Files

"DRC-2011-008358"

White Mesa Uranium Mill

Chloroform Monitoring Report

State of Utah Notice of Violation and Groundwater Corrective Action Order UDEQ Docket No. UGQ-20-01

> 1st Quarter (January through March) 2011

> > Prepared by:

Denison Mines (USA) Corp. 1050 17th Street, Suite 950 Denver CO 80265

May 20, 2011

TABLE OF CONTENTS

.

1.0	INTRODUCTION1
2.0	CHLOROFORM MONITORING1
2.1	
2.	1.1 Chloroform Monitoring1
	1.2 Parameters Analyzed
	1.3 Groundwater Head Monitoring
2.2	I
	2.1 Well Purging and Depth to Groundwater
	2.2 Sample Collection
2.3	Field Data
2.4	Depth to Groundwater Data and Water Table Contour Map
2.5	
	5.1 Copy of Laboratory Results
	5.2 Regulatory Framework
3.0	QUALITY ASSURANCE AND DATA VALIDATION
3.1	Field QC Samples
3.2	Adherence to Mill Sampling SOPs
3.3	Analyte Completeness Review
3.4	Data Validation
	4.1 Field Data QA/QC Evaluation
	4.2 Holding Time Evaluation
	4.3 Receipt Temperature Evaluation
	 4.4 Analytical Method Checklist
	 4.5 Reporting Limit Evaluation
	•
	 4.7 QA/QC Evaluation for Sample Duplicates
	4.6 Knisate Sample Check 10 4.9 Other Laboratory QA/QC 12
4.0	INTERPRETATION OF DATA
4.1	
	1.1 Current Site Groundwater Contour Map
	1.2 Comparison of Current Groundwater Contour Maps to Groundwater
Т	Contour Map for Previous Quarter
4	1.3 Hydrographs
	1.4Depth to Groundwater Measured and Groundwater Elevation
	1.5 Evaluation of the Effectiveness of Hydraulic Capture
4.2	· ·
	2.1 Current Chloroform Isoconcentration Map
	2.2 Chloroform Concentration Trend Data and Graphs
4.	2.3 Interpretation of Analytical Data
	LONG TERM PUMP TEST AT MW-4, MW-26, TW4-19, TW4-20, AND
	TW4-4 OPERATIONS REPORT
5.1	Introduction
5.2	Pump Test Data Collection
5.3	Water Level Measurements

		,
5.4	Pumping Rates and Volumes	
5.	4.1 MW-4	
5.	4.2 TW4-19	
5.	4.3 MW-26	
5.	4.4 TW4-20	
5.	4.5 TW4-4	
5.5	Mass Removed	
5.6	Inspections	
5.7	Conditions That May Affect Water Levels in Piezometers	
6.0	CORRECTIVE ACTION REPORT	
6.1	Rinsate Blank Sample Nitrate Levels	
	Assessment of Previous Quarter's Corrective Actions	
7.0	CONCLUSIONS AND RECOMMENDATIONS	
8.0	ELECTRONIC DATA FILES AND FORMAT	
9.0	SIGNATURE AND CERTIFICATION	

LIST OF TABLES

,

Table 1 Summary of Well Sampling for	or the Period
--	---------------

 Table 2
 Mass of Chloroform Removed Per Well Per Quarter

INDEX OF TABS

- Tab A Site Plan and Perched Well Locations White Mesa Site
- Tab B Order of Sampling and Field Data Worksheets
- Tab C Weekly and Monthly Depth to Water Data
- Tab D Kriged Current Quarter Groundwater Contour Map, Capture Zone Map, Capture Zone Details Map, and Depth to Water Data Table
- Tab E Kriged Previous Quarter Groundwater Contour Map
- Tab F Hydrographs of Groundwater Elevations Over Time for Chloroform Monitoring Wells
- Tab G Depths to Groundwater and Elevations Over Time for Monitoring Wells
- Tab H Laboratory Analytical Reports

Tab I Quality Assurance and Data Validation Tables

- I-1 Field Data QA/QC Evaluation
- I-2 Holding Time Evaluation
- I-3 Receipt Temperature Check
- I-4 Analytical Method Check
- I-5 Reporting Limit Evaluation
- I-6 Trip Blank Evaluation
- I-7 QA/QC Evaluation for Sample Duplicates
- I-8 QC Control Limits for Analyses and Blanks
- I-9 Rinsate Evaluation
- Tab J Kriged Current Quarter Chloroform Isoconcentration Map
- Tab K Analyte Concentration Data Over Time
- Tab L Chloroform Concentration Trend Graphs
- Tab M CSV Transmittal Letter

1.0 INTRODUCTION

The presence of chloroform was initially identified in groundwater at the White Mesa Mill (the "Mill") as a result of split sampling performed in May 1999. The discovery resulted in the issuance of State of Utah Notice of Violation ("NOV") and Groundwater Corrective Action Order ("CAO") State of Utah Department of Environmental Quality ("UDEQ") Docket No. UGQ-20-01, which required that Denison Mines (USA) Corp. ("DUSA") submit a Contamination Investigation Plan and Report pursuant to the provisions of UAC R317-6-6.15(D).

The frequency of chloroform sampling, which was initially performed on a monthly basis, was modified on November 8, 2003. Since that time all chloroform contaminant investigation wells have been sampled on a quarterly basis.

This is the Quarterly Chloroform Monitoring Report for the first quarter of 2011 as required under the NOV and CAO. This Report also includes the Operations Report for the Long Term Pump Test at MW-4, TW4-19, MW-26 (previously referred to as TW4-15), TW4-20, and TW4-4 for the quarter.

2.0 CHLOROFORM MONITORING

2.1 Samples and Measurements Taken During the Quarter

A map showing the location of all groundwater monitoring wells, piezometers, existing wells, temporary chloroform contaminant investigation wells and temporary nitrate investigation wells is attached under Tab A. Chloroform samples and measurements taken during this reporting period (January through March), are discussed in the remainder of this section.

2.1.1 Chloroform Monitoring

Quarterly sampling for chloroform monitoring parameters is currently required in the following wells:

TW4-1	TW4-10	T W4-2 1
TW4-2	TW4-11	TW4-22
TW4-3	TW4-12	TW4-23
TW4-4	TW4-13	TW4-24
TW4-5	TW4-14	TW4-25
TW4-6	TW4-16	MW-4
TW4-7	TW4-18	MW-26
TW4-8	TW4-19	MW-32 (formerly TW4-17)
TW4-9	TW4-20	TW4-26

Table 1 provides an overview of all wells sampled during the current period, along with the date samples were collected from each well, and the date(s) which analytical data were received from the contract laboratory. Table 1 also identifies equipment rinsate samples collected, as well as sample numbers associated with the deionized field blank (DIFB) and any required duplicates.

As indicated in Table 1, chloroform monitoring was performed in all of the required chloroform monitoring wells.

2.1.2 Parameters Analyzed

Wells sampled during this reporting period were analyzed for the following constituents:

- Chloroform
- Chloromethane
- Carbon tetrachloride
- Methylene chloride
- Chloride
- Nitrate plus Nitrite as Nitrogen

Use of analytical methods is consistent with the requirements of the Chloroform Investigation Monitoring Quality Assurance Program (the "Chloroform QAP") attached as Appendix A to the White Mesa Uranium Mill Groundwater Monitoring Quality Assurance Plan ("QAP").

2.1.3 Groundwater Head Monitoring

Depth to groundwater was measured in the following wells and/or piezometers, pursuant to Part I.E.3 of the Groundwater Discharge Permit (the "GWDP"):

- The quarterly groundwater compliance monitoring wells.
- Existing monitoring well MW-4 and all of the temporary chloroform investigation wells.
- Piezometers P-1, P-2, P-3, P-4 and P-5.
- MW-20 and MW-22.
- Nitrate monitoring wells.
- In addition to the above, depth to water measurements are routinely observed in conjunction with sampling events for all wells sampled during quarterly and accelerated efforts, regardless of the sampling purpose.

All well levels used for groundwater contour mapping were measured and recorded within 5 calendar days of each other as indicated by the measurement data in the summary sheet under Tab D.

In addition, weekly and monthly depth to groundwater measurements were taken in MW-4, MW-26, TW4-19, TW4-20, and TW4-4, as part of the long term pumping test for MW-4.

2.2 Sampling Methodology and Equipment and Decontamination Procedures

DUSA completed, and transmitted to UDEQ on May 25, 2006, a revised QAP for sampling under the Mill's GWDP. While the water sampling conducted for chloroform investigation purposes has conformed to the general principles set out in the QAP, some of the requirements in the QAP were not fully implemented prior to UDEQ's approval, for reasons set out in correspondence to UDEQ dated December 8, 2006. Subsequent to the delivery of the December 8, 2006 letter, DUSA discussed the issues brought forward in the letter with UDEQ and has received correspondence from UDEQ about those issues. In response to UDEQ's letter and subsequent discussions with UDEQ, DUSA has incorporated changes in chloroform Quality Assurance ("QA") procedures in the form of the Chloroform QAP, which is a separate Appendix A to the QAP. The Chloroform QAP describes the differing needs of the chloroform investigation program, and is an attachment to the GWDP QAP where QA requirements for the chloroform investigation are addressed. On June 20, 2009 the Chloroform QAP was modified to require that the quarterly chloroform capture efforts.

The sampling methodology, equipment and decontamination procedures that were performed for the chloroform contaminant investigation, as summarized below, are consistent with the QAP and the Chloroform QAP.

2.2.1 Well Purging and Depth to Groundwater

A list of the wells in order of increasing chloroform contamination is generated quarterly. The order for purging is thus established. The list is included with the Field Data Worksheets under Tab B. Mill personnel start purging with all of the non-detect wells and then move to the more contaminated wells in order of chloroform contamination.

Before leaving the Mill office, the portable pump and hose are rinsed with DI water. A rinsate blank sample is collected at the beginning of each day prior to the first use of the pump. Mill personnel then proceed to the first well which is the well with the lowest concentration of chloroform based on the previous quarter's sampling results. Well depth measurements are taken and the two casing volumes are calculated for those wells which do not have a dedicated pump (measurements are made using the same instrument used for the monitoring wells under the Mill's GWDP). If the well has a dedicated pump, it is pumped on a set schedule per the remediation plan and is considered sufficiently evacuated to immediately collect a sample; however, if a pumping well has been out of service for 48 hours or more, DUSA will follow the purging requirements outlined in Section 6.2.7(d)(v) of the QAP. The dedicated pump is used to collect parameters and to collect the samples as described below. If the well does not have a dedicated pump, a Grundfos pump (9 - 10 gpm pump) is then lowered to the screened interval in the well and purging is started. The purge rate is established for the well by using a calibrated 5

gallon bucket. The purging of the well is completed per Section 6.2.5 of the QAP. In wells where the portable pump is used, a disposable bailer is used to collect the samples the day following purging activities. After each use, the portable pump is decontaminated prior to reuse at the next sample location. This purging process is repeated at each well location moving from least contaminated to the most contaminated well. All wells are capped and secured prior to leaving the sampling location.

Wells with dedicated pumps are sampled when the pump is in the pumping mode. If the pump is not pumping at the time of sampling, it is manually switched on by the Mill Personnel. The well is pumped for approximately 5 to 10 minutes prior to the collection of the field parameters. Per the approved QAP, one set of parameters is collected. Samples are collected following the measurement of one set of field parameters. The pump is turned off and allowed to resume its timed schedule.

2.2.2 Sample Collection

Samples are collected as described above. In all cases, on days when samples will be collected, a cooler with ice is prepared. The trip blank is also gathered at that time (the trip blank for these events is provided by the Analytical Laboratory). Once Mill Personnel arrive at the well sites, labels are filled out for the various samples to be collected. All personnel involved with the collection of water and samples are then outfitted with rubber gloves. Chloroform investigation samples are collected by means of disposable bailers.

Mill personnel use a disposable bailer to sample each well that does not have a dedicated pump. The bailer is attached to a reel of approximately 150 feet of nylon rope and then lowered into the well. After coming into contact with the water, the bailer is allowed to sink into the water in order to fill. Once full, the bailer is reeled up out of the well and the sample bottles are filled as follows:

- Volatile Organic Compound ("VOC") samples are collected first. This sample consists of three 40 ml vials provided by the Analytical Laboratory. The VOC sample is not filtered and is preserved with HCl;
- A sample for nitrate/nitrite is then collected. This sample consists of one 250 ml. bottle which is provided by the Analytical Laboratory. The nitrate/nitrite sample is also not filtered and is preserved with H₂SO₄;
- A sample for chloride is then collected. This sample consists of one 500 ml. bottle which is provided by the Analytical Laboratory. The chloride sample is also not filtered and is not chemically preserved.

After the samples have been collected for a particular well, the bailer is disposed of and the samples are placed into the cooler that contains ice. The well is then recapped and Mill personnel proceed to the next well.

2.3 Field Data

Attached under Tab B are copies of all Field Data Worksheets that were completed during the quarter for the chloroform contaminant investigation monitoring wells identified in paragraph 2.1.1 above, and Table 1.

2.4 Depth to Groundwater Data and Water Table Contour Map

Attached under Tab C are copies of the Depth to Water Sheets for the weekly monitoring of MW-4, MW-26, TW4-19, TW4-20, and TW4-4, as well as the monthly depth to groundwater data for chloroform contaminant investigation wells measured during the quarter that are not included in Tab D. Depth to groundwater measurements which were utilized for groundwater contours are included on the Quarterly Depth to Water Worksheet at Tab D of this report, along with the kriged groundwater contour map for the current quarter generated from this data. All of the water level measurements used for the contour map were collected within 5 days of each other as indicated by the measurement dates in the summary sheet under Tab D. A copy of the kriged groundwater contour map generated from the 4th quarter 2010 data is provided under Tab E.

2.5 Laboratory Results

2.5.1 Copy of Laboratory Results

All analytical results were provided by Energy Laboratories ("EL"). Table 1 lists the dates when analytical results were reported to the QA Manager for each well or other sample.

Results from analysis of samples collected for the first quarter chloroform contaminant investigation are provided under Tab H of this Report. Also included under Tab H are the results of analyses for duplicate samples, the DIFB, and rinsate samples for this sampling effort, as identified in Table 1, as well as results for trip blank analyses required by the Chloroform QAP.

2.5.2 Regulatory Framework

As discussed in Section 1.0, above, the NOV and requirements of the CAO triggered a series of actions on DUSA's part. In addition to the monitoring program, DUSA has equipped five wells with pumps to recover impacted groundwater, and has initiated recovery of chloroform from the perched zone.

Sections 4 and 5, below, interpret the groundwater level and flow information, contaminant analytical results, and pump test data to assess effectiveness of DUSA's chloroform capture program.

3.0 QUALITY ASSURANCE AND DATA VALIDATION

The QA Manager performed a QA/Quality Control ("QC") review to confirm compliance of the monitoring program with requirements of the QAP. As required in the QAP, data QA includes preparation and analysis of QC samples in the field, review of field procedures, an analyte completeness review, and QC review of laboratory methods and data. Identification of field QC samples collected and analyzed is provided in Section 3.1. Discussion of adherence to Mill sampling Standard Operating Procedures ("SOPs") is provided in Section 3.2. Analytical completeness review results are provided in Section 3.3. The steps and tests applied to check laboratory data QA/QC are discussed in Sections 3.4.4 through 3.4.9 below.

The analytical laboratory has provided summary reports of the analytical quality QA/QC measurements necessary to maintain conformance with National Environmental Laboratory Accreditation Conference ("NELAC") certification and reporting protocol. The Analytical Laboratory QA/QC Summary Reports, including copies of the Mill's Chain of Custody and Analytical Request Record forms for each set of Analytical Results, follow the analytical results under Tab H. Results of review of the laboratory QA/QC information are provided under Tab I and are discussed in Section 3.4, below.

3.1 Field QC Samples

The following QC samples were generated by Mill personnel and submitted to the analytical laboratory in order to assess the quality of data resulting from the field sampling program.

Field QC samples for the chloroform investigation program consist of one field duplicate sample for each 20 samples, a trip blank for each shipped cooler which contains VOCs, one DIFB and rinsate samples.

During this quarter, two duplicate samples were collected as indicated in Table 1. The duplicates were sent blind to the analytical laboratory and analyzed for the same parameters as the chloroform wells.

Two trip blanks were provided by Energy Laboratories and returned with the quarterly chloroform monitoring samples.

Six rinsate blank samples were collected as indicated on Table 1. Rinsate samples were labeled with the name of the subsequently purged well with a terminal letter "R" added (e.g. TW4-7R). The results of these analyses are included with the routine analyses under Tab H.

It is important to note that the rinsate blank sample frequency was modified in the fourth quarter 2010 as recommended by UDEQ personnel present on site for split sampling. Previously, a rinsate blank sample was collected after each decontamination of the nondedicated pump and prior to the next use of the pump. Per an e-mail from Mr. Phil Goble, dated October 4, 2010, rinsate blank samples are only required at the beginning of

6

the sampling event and at the beginning of each day of sampling. The frequency change was implemented immediately and the rinsate blank frequency has been modified for all sampling events since.

In addition, one DIFB, while not required by the Chloroform QAP, was collected and analyzed for the same constituents as the well samples and rinsate blank samples.

3.2 Adherence to Mill Sampling SOPs

On a review of adherence by Mill personnel to the existing sampling SOPs, the QA Manager observed that QA/QC requirements established in the QAP and Chloroform QAP were being adhered to and that the SOPs were implemented, except as described below.

One site procedure requiring clarification was noted during the QA Manager's review of the field data. As previously stated, a list of the wells in order of increasing chloroform contamination (based on the previous quarter's data) is generated quarterly prior to the next quarter's sampling to determine the order for purging prior to sampling. Consistent with the approved QAP, each quarterly event begins with purging of the wells from the least affected to the most affected based on the previous quarter's data. Although purging follows this order, the sampling order may deviate slightly from the generated list. This practice does not affect the samples for these reasons: any wells sampled in slightly different order had either dedicated pumps or were sampled via a disposable bailer. This practice does not affect the quality or usability of the data as there is no crosscontamination resulting from sampling order. DUSA intends to propose an amendment to clarify this practice in the next revision of the QAP.

3.3 Analyte Completeness Review

All analyses required by the GWDP for chloroform monitoring for the period were performed.

3.4 Data Validation

The QAP and GWDP identify the data validation steps and data QC checks required for the chloroform monitoring program. Consistent with these requirements, the QA Manager performed the following evaluations: a field data QA/QC evaluation, a holding time check, a receipt temperature check, an analytical method check, a reporting limit evaluation, a trip blank check, a QA/QC evaluation of sample duplicates, a QC Control Limit check for analyses and blanks including the DIFB and a rinsate sample check. Each evaluation is discussed in the following sections. Data check tables indicating the results of each test are provided under Tab I.

3.4.1 Field Data QA/QC Evaluation

The QA Manager performs a review of all field recorded parameters to assess their adherence with QAP requirements. The assessment involved review of two sources of

information: the Field Data Sheets and the Quarterly Depth to Water summary sheet. Review of the Field Data Sheets addresses well purging volumes and stability of five parameters: conductance, pH, temperature, redox potential, and turbidity. Review of the Depth to Water data confirms that all depth measurements used for development of groundwater contour maps were conducted within a five-day period as indicated by the measurement dates in the summary sheet under Tab D. The results of this quarter's review of field data are provided under Tab I.

Based upon this review, all non-pumping wells conformed to the QAP requirement to evacuate two well casing volumes before sampling except TW4-1, TW4-2, TW4-3, TW4-7, TW4-10, TW4-13, TW4-14, TW4-16, TW4-22, and TW4-26. All of these wells were pumped to dryness before two casing volumes were evacuated and as such the requirement to purge two casing volumes does not apply. In each case, representative samples of formation water were collected after the wells were allowed to recover. In addition, TW4-6, and TW4-11, were pumped to dryness after 2 casing volumes were evacuated.

During review of the field data sheets, it was observed that sampling personnel consistently recorded depth to water to the nearest 0.01 foot.

All field parameters for all wells were within the required Relative Percent Difference ("RPD") (other than the wells that were pumped to dryness and the wells which are continually pumped, for which this requirement does not apply), except as follows.

The review of the field sheets for compliance with QAP requirements resulted in the observations noted below. The requirements in Section 6.2.7 of the QAP specifically state that field parameters must have stabilized to within 10% over at least 2 consecutive measurements. The QAP states that turbidity should be less than 5 Nephelometric Turbidity Units ("NTU") prior to sampling unless the well is characterized by water that has a higher turbidity. The QAP does not require that turbidity measurements be less than 5 NTU prior to sampling. As such, the noted observations regarding turbidity measurements less than 5 NTU below are included for information purposes only.

Six wells did not meet the requirement for the stabilization of turbidity within 10% RPD and two wells did not meet the requirement for the stabilization of conductivity within 10% RPD. In all cases, the wells were purged to dryness prior to the achievement of stabilization for turbidity and conductivity and as such the requirement to meet the stabilization criteria does not apply.

Twenty-three turbidity measurements exceeded the QAP's 5 NTU goal. Of the twentythree wells, nine wells were pumped to dryness. The QAP does not require that turbidity measurements be less than 5 NTU prior to sampling. As such, the noted observations regarding turbidity measurements less than 5 NTU below are included for information purposes only.

DUSA's letter to DRC of March 26, 2010 discusses further why turbidity does not appear to be an appropriate parameter for assessing well stabilization. In response to DRC's subsequent correspondence dated June 1, 2010 and June 24, 2010, DUSA is currently implementing a monitoring well redevelopment program. The redevelopment program has reviewed the available turbidity data for the nitrate wells and has developed a list of wells that have undergone redevelopment utilizing several strategies. The redevelopment strategies include additional surging and bailing and overpumping as necessary. Surging and bailing and overpumping for the nitrate and chloroform wells is complete. Redevelopment of the groundwater wells is in progress. Data from the redevelopment of the chloroform wells will be reviewed with the data from the redevelopment of the nitrate and groundwater programs. A single report will be prepared at the completion of the redevelopment program for the wells in all three programs which is planned for submittal on or before the end of the third quarter 2011. DUSA will review the redevelopment data and summarize the status of the Mill wells. Redevelopment results will be discussed with DRC in an effort to come to a consensus regarding turbidity considerations for the chloroform wells at the Mill site.

3.4.2 Holding Time Evaluation

QAP Table 1 identifies the method holding times for each suite of parameters. Sample holding time checks are provided in Tab I. All samples were received and analyzed within the required holding time.

3.4.3 Receipt Temperature Evaluation

Chain of Custody sheets were reviewed to confirm compliance with the QAP requirement which specifies that samples be received at 6°C or lower. Sample temperatures checks are provided in Tab I. All samples were received within the required temperature limit.

3.4.4 Analytical Method Checklist

All analytical methods reported by the laboratory were checked against the required methods enumerated in the Chloroform QAP. Analytical method checks are provided in Tab I. All methods were consistent with the requirements of the Chloroform QAP.

3.4.5 Reporting Limit Evaluation

All analytical method reporting limits reported by the laboratory were checked against the reporting limits enumerated in the Chloroform QAP. Reporting Limit Checks are provided under Tab I. All analytes were measured and reported to the required reporting limits, except 25 sets of sample results (23 wells, and 2 duplicates) had the reporting limit raised for at least one analyte due to matrix interference and/or sample dilution. In all cases the reported value for the analyte was higher than the increased detection limit.

3.4.6 Trip Blank Evaluation

All trip blank results were reviewed to identify any VOC contamination resulting from transport of the samples. Trip blank checks are provided in Tab I. All trip blank results were less than the reporting limit for all VOC analytes.

3.4.7 QA/QC Evaluation for Sample Duplicates

Section 9.1.4 a) of the QAP states that RPDs will be calculated for the comparison of duplicate and original field samples. The QAP acceptance limits for RPDs between the duplicate and original field sample is less than or equal to 20% unless the measured results (described as activities in the QAP) are less than 5 times the required detection limit. This standard is based on the EPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, February 1994, 9240.1-05-01 as cited in the QAP. The RPDs are calculated for all duplicate pairs for all analytes regardless of whether or not the reported concentrations are greater than 5 times the required detection limits; however, data will be considered noncompliant only when the results are greater than 5 times the reported detection limit and the RPD is greater than 20%. The additional duplicate information is provided for information purposes.

All analytical results except for chloroform in sample/duplicate pairs TW4-19/TW4-65 and TW4-10/TW4-70 were within the 20% RPD acceptance limits. The chloroform results for both sets of duplicate pairs are greater than 5 times the reporting limit and both sets of duplicate pairs results were diluted 100-fold or more due to the high chloroform concentration. The RPD greater than 20% is most likely due to a dilution error in the laboratory. In addition, the results are significantly above the groundwater quality standard of 70 ug/L and as such the noncompliant RPD results do not affect the quality or usability of the data. Results of the RPD test are provided in Tab I.

3.4.8 Rinsate Sample Check

Rinsate blank sample checks are provided in Tab I.

Chloroform

A review of the analytical results reported for rinsate blank samples indicated that none of the rinsate blank samples contained chloroform. A DIFB was analyzed and was reported as nondetect.

Nitrate

Five rinsate blank samples had reported low level concentrations of nitrate. A DIFB was analyzed and was reported as nondetect for nitrate. A comparison of the rinsate blank sample concentration levels to the QAP requirements – that rinsate sample concentrations be one order of magnitude lower than that of the actual well – indicated that all but one of the rinsate blank samples met this criterion. Rinsate blank TW4-9R had a reported detection of nitrate of 0.2 mg/L while the previously sampled well was reported as nondetect.

This criterion however, is irrelevant and inappropriate for the rinsate blank sample data collected during the nitrate sampling because rinsate blank samples are collected from the decontaminated portable pump used for well purging, and the pump is not used for sample collection. As stated in Section 2.2.1, wells that do not have a dedicated pump

are purged using a portable pump. In wells where the portable pump is used for purging, a disposable bailer is used to collect the samples the day following purging activities.

Rinsate blank samples collected from the portable pump may be indicative of possible cross-contamination resulting from pump usage during the purging process. Under the Mill's sampling program the rinsate blank sample results are not directly applicable to the sample results due to the use of different equipment (disposable bailers) for the sample collection. The pump used for purging does not come into contact with the samples at any time during the sample collection process and therefore comparison of the pump rinsate blanks to the sample results is irrelevant and inappropriate. Any nitrate left in the well from pump cross-contamination is reduced or negated by the influx of formation water into the well in the time after purging and prior to sampling. Because samples are collected the day following purging and using different equipment, the rinsate blank concentration resulting from the pump use or decontamination fluids is not applicable to the sample results because the pump does not contact the samples. As noted in previous reports, an investigation into the source of the nitrate contamination present in the rinsate blank samples has been ongoing. Below are the results of the source investigations, and corrective actions are detailed in Section 6.2.

The nitrate levels reported in the rinsate blank samples for this investigation are similar to the nitrate rinsate sample concentrations reported for the previous nitrate sampling programs. Data collected for this ongoing investigation are as follows:

- The nitrate concentrations in the rinsate samples from both the chloroform sampling program and the nitrate sampling program are just slightly above the detection limit and are not dependent on or affected by the previous sample concentrations.
- The presence of nitrate in both the chloroform and nitrate sampling programs indicates that the contamination is due to external factors such as the nitric acid rinse during the decontamination process and potential absorption of nitrogen from the nitric acid into the non-stainless steel portions of the purging equipment including the pump tubing and connectors.

The investigation into the nitrate in the rinsate blanks is continuing, with additional focus on the rinsate collection process. Nitric acid introduced during the decontamination process is the single highest possible source of nitrate ions. However, there may be some contribution of nitrate from the decontamination process and/or the purging equipment. To address these issues, the decontamination process and rinsate collection process are being reviewed to determine if the purging equipment in combination with the nitric acid wash used during the decontamination process are causing the nitrate detections in the rinsate blanks.

Corrective actions are described in Section 6.2.

3.4.9 Other Laboratory QA/QC

Section 9.2 of the QAP requires that the laboratory's QA/QC Manager check the following items in developing data reports: (1) sample preparation information is correct and complete, (2) analysis information is correct and complete, (3) appropriate analytical laboratory procedures are followed, (4) analytical results are correct and complete, (5) QC samples are within established control limits, (6) blanks are within QC limits, (7) special sample preparation and analytical requirements have been met, and (8) documentation is complete. In addition to other laboratory checks described above, DUSA's QA Manager rechecks QC samples and blanks (items (5) and (6)) to confirm that the percent recovery for spikes and the relative percent difference for spike duplicates are within the method-specified acceptance limits, or that the case narrative sufficiently explains any deviation from these limits. Results of this quantitative check are provided in Tab I.

All lab QA/QC results met these specified acceptance limits except as noted below.

The QAP Section 8.1.2 requires that an MS/MSD (referred to as Duplicate Spike [Matrix spike] in the QAP) pair be analyzed with each analytical batch. The QAP does not specify acceptance limits for the MS/MSD pair, and the QAP does not specify that the MS/MSD pair be prepared on DUSA samples only. Acceptance limits for MS/MSDs are set by the laboratories. The review of the information provided by the laboratories in the data packages verified that the QAP requirement to analyze an MS/MSD pair with each analytical batch was met. While the QAP does not require it, the recoveries were reviewed for compliance with the laboratory established acceptance limits. The QAP does not require this level of review, and the results of this review are provided for information only.

The information from the Laboratory QA/QC Summary Reports indicates that the MS/MSDs recoveries and the associated RPDs for all quarterly chloroform samples are within acceptable laboratory limits for all regulated compounds except as indicated in Tab I. The recoveries, which are above the laboratory established acceptance limits, do not affect the quality or usability of the data because the recoveries above the acceptance limits are indicative of matrix interference. The QAP requirement to analyze a MS/MSD pair with each analytical batch was met and as such the data are compliant with the QAP.

The QAP specifies that surrogate compounds shall be employed for all organic analyses, but the QAP does not specify acceptance limits for surrogate recoveries. The analytical data associated with the routine quarterly sampling met the requirement specified in the QAP. The information from the Laboratory QA/QC Summary Reports indicates that the surrogate recoveries for all quarterly chloroform samples were within acceptable laboratory limits for all surrogate compounds except as indicated in Tab I. The surrogate recoveries that were outside of acceptance limits were above the upper limit or that had a high recovery, indicating a high bias to the individual sample results. A high bias means that reported results will be higher than the actual results. There is no effect on the quality or usability of the data because there are multiple surrogates added to each sample

and all other surrogates were within limits. Furthermore, there are no QAP requirements for surrogate recoveries.

The information from the Laboratory QA/QC Summary Reports indicates that all LCS recoveries were within acceptable laboratory limits for all LCS compounds.

4.0 INTERPRETATION OF DATA

4.1 Interpretation of Groundwater Levels, Gradients and Flow Directions.

4.1.1 Current Site Groundwater Contour Map

As stated above, a listing of groundwater level readings for the current quarter (shown as depth to groundwater in feet) is included under Tab D. The data from this tab has been interpreted (kriged) and plotted in a water table contour map, provided under the same tab.

Also included under Tab D is a groundwater contour map of the Mill site and a more detailed map of a portion of the Mill site where the four chloroform pumping wells are located, in each case with hand-drawn stream tubes, depicting hydraulic capture from the pumping

The contour maps are based on the February 28, 2011 data for all wells.

The water level contour maps indicate that perched water flow at the site ranges from generally southwesterly in the western portion of the site to generally southerly in the eastern portion of the site. Perched water mounding associated with the wildlife ponds locally changes the flow patterns. For example, northeast of the Mill site, mounding associated with wildlife ponds results in locally northerly flow near MW-19. Flow directions are also locally influenced by pumping at MW-4, MW-26, TW4-4, TW4-19, and TW4-20. Significant cones of depression have formed in the vicinity of all pumping wells except TW4-4, which began pumping in the first quarter of 2010.

Although pumping at TW4-4 has depressed the water table in the immediate vicinity of TW4-4, the well has apparently not been pumped long enough to have measurably affected water levels at adjacent wells. Therefore, a well-defined cone of depression is not yet evident. Water levels at wells immediately south of TW4-4 have likely not responded measurably to TW4-4 pumping because TW4-4 is located at a transition from relatively high to relatively low permeability conditions south (downgradient) of TW4-4. The permeability of the perched zone at TW4-6 and TW4-26 is approximately 2 orders of magnitude lower than at TW4-4.

The lack of definition of a cone of depression at TW4-4 is also influenced by the persistent, apparently anomalously low water level at non-pumping well TW4-14, located east of TW4-4 and TW4-6. For the current quarter, the water level at TW4-14 is approximately 13 feet lower than the water level at TW4-6 and approximately 19 feet lower than TW4-4 even though TW4-4 is pumping. The low water level at TW4-14 is considered anomalous because it appears to be downgradient of all three wells TW4-4,

TW4-6, and TW4-26, yet there is no chloroform at TW4-14. Chloroform has apparently migrated from TW4-4 to TW4-6 and from TW4-6 to TW4-26 which suggests that TW4-26 is actually downgradient of TW4-6, and TW4-6 is actually downgradient of TW4-4, regardless of the flow direction implied by the low water level at TW4-14.

4.1.2 Comparison of Current Groundwater Contour Maps to Groundwater Contour Map for Previous Quarter

The groundwater contour maps for the Mill site for the fourth quarter of 2010, as submitted with the Chloroform Monitoring Report for the fourth quarter of 2010, are attached under Tab E.

A comparison of the water table contour maps for the first quarter of 2011 to the water table contour maps for the previous quarter (fourth quarter of 2010) indicates similar patterns of drawdown related to pumping of MW-4, MW-26, TW4-4, TW4-19 and TW4-20. Water levels and water level contours for the site have not changed significantly since the last quarter, except for a few locations. As discussed in Section 4.1.1, pumping at TW4-4, which began in the first quarter of 2010, has depressed the water table near TW4-4, but does not yet appear to have measurably affected water levels at adjacent wells.

A reported increase in water level of approximately 3 feet occurred in Piez-3. Reported decreases in water levels of approximately 5 feet occurred in well MW-18, of approximately 21 feet occurred in well TW4-18, and of approximately 20 feet occurred in well TWN-18. A reported increase in water level of approximately 11 feet occurred in pumping well TW4-4, and a reported decrease in water level of approximately 18 feet occurred in pumping well TW4-19. Water level changes at other pumping wells were less than 5 feet.

Water level fluctuations at pumping wells MW-4, MW-26, TW4-4, TW4-19, and TW4-20 are due in part to fluctuations in pumping conditions just prior to and at the time the measurements are taken. The largest decrease (increase in drawdown) of approximately 18 feet occurred in well TW4-19 and the largest increase (decrease in drawdown), of approximately 11 feet, occurred at TW4-4. Water levels reported for TW4-18 and TWN-18 during the current quarter are more similar to historical measurements than those reported for the previous quarter.

4.1.3 Hydrographs

Attached under Tab F are hydrographs showing groundwater elevation in each chloroform contaminant investigation monitor well over time.

4.1.4 Depth to Groundwater Measured and Groundwater Elevation

Attached under Tab G are tables showing depth to groundwater measured and groundwater elevation over time for each of the wells listed in Section 2.1.1 above.

4.1.5 Evaluation of the Effectiveness of Hydraulic Capture

Perched water containing chloroform has been removed from the subsurface by pumping MW-4, MW-26, TW4-4, TW4-19, and TW4-20. The primary purpose of the pumping is to reduce total chloroform mass in the perched zone as rapidly as is practical. Pumping wells upgradient of TW4-4 were chosen for pumping because 1) they are located in areas of the perched zone having relatively high permeability and saturated thickness, and 2) high concentrations of chloroform were detected at these locations. The relatively high transmissivity of the perched zone in the vicinity of these pumping wells results in the wells having a relatively high productivity. The combination of relatively high productivity and high chloroform concentrations allows a high rate of chloroform mass removal. TW4-4 is located in a downgradient area having relatively high chloroform concentrations but relatively small saturated thickness, and at a transition from relatively high to relatively low permeability conditions downgradient of TW4-4. As with other pumping wells, pumping TW4-4 helps to reduce the rate of chloroform migration in downgradient portions of the plume.

The impact of pumping is indicated by the water level contour maps attached under Tabs D and E. Cones of depression have developed in the vicinity of MW-4, MW-26, TW4-19, and TW4-20 which continue to remove significant quantities of chloroform from the perched zone. The water level contour maps indicate that effective capture of water containing high chloroform concentrations in the vicinity of these pumping wells is occurring. Overall, the combined capture of MW-4, MW-26, TW4-19, and TW4-20 has not changed significantly since the last quarter. As noted in Section 4.1.2, a decrease in water level (increase in drawdown) of approximately 18 feet occurred at TW4-19, and an increase in water level (decrease in drawdown) of approximately 11 feet occurred at TW4-4. The increase in drawdown at TW4-19 has increased the apparent capture zone of this well relative to other nearby pumping wells. As discussed in Section 4.4.1, TW4-4 has apparently not been pumped long enough for a well-defined capture zone to develop and the drawdown associated with TW4-4 is likely less apparent due to the low water level at TW4-14.

Chloroform concentrations exceeding 70 μ g/L have occurred at some locations downgradient of pumping wells (for example, at TW4-6, located immediately south and as discussed in Section 4.1.1, presumably downgradient of TW4-4), where the lower permeability and relatively small saturated thickness of the perched zone significantly limits the rate at which chloroform mass can be removed by pumping. By removing mass and reducing hydraulic gradients, thereby reducing the rate of downgradient chloroform migration, and allowing natural attenuation to be more effective, pumping at the productive, upgradient locations has a beneficial effect on this downgradient chloroform. Pumping at TW4-4 was implemented during the first quarter of 2010 to improve capture in this downgradient area to the extent allowable by the lower productivity conditions presumed to exist in this area. The beneficial effect of pumping TW4-4 is demonstrated by the decrease in chloroform concentrations at TW4-6 from 1,000 μ g/L to 47 μ g/L, and at TW4-26 from 13 μ g/L to 2 μ g/L since pumping began at TW4-4. Concentrations at these wells have decreased substantially even though they do not appear to be within the hydraulic capture of TW4-4. Pumping TW4-4 acts to cut off the source of chloroform to these wells by the mechanisms discussed above.

4.2 Review of Analytical Results

4.2.1 Current Chloroform Isoconcentration Map

Included under Tab J of this Report is a current chloroform isoconcentration map for the Mill site.

4.2.2 Chloroform Concentration Trend Data and Graphs

Attached under Tab K is a table summarizing values for all required parameters, chloride, nitrate/nitrite, carbon tetrachloride, chloroform, chloromethane, and methylene chloride, for each well over time.

Attached under Tab L are graphs showing chloroform concentration trends in each monitor well over time.

4.2.3 Interpretation of Analytical Data

Comparing the analytical results to those of the previous quarter, as summarized in the table included under Tab K, the following observations can be made:

- a) Chloroform concentrations have increased by more than 20% in the following wells compared to last quarter: TW4-11, TW4-16, TW4-18, TW4-19, TW4-20, TW4-22, and TW4-24;
- b) Chloroform concentrations have decreased by more than 20% in the following wells compared to last quarter: TW4-6, TW4-10, MW-26, and TW4-26;
- c) Chloroform concentrations have remained within 20% in the following wells compared to last quarter: MW-4, TW4-1, TW4-2, TW4-4, TW4-5, TW4-7, and TW4-21; and
- d) TW4-3, TW4-8, TW4-9, TW4-12, TW4-13, TW4-14, MW-32, TW4-23, and TW4-25 remained non-detect.

As indicated, chloroform concentrations at many of the wells with detected chloroform were within 20% of the values reported for the wells during the previous quarter, suggesting that variations are within the range typical for sampling and analytical error. Wells TW4-6, TW4-10, TW4-11, MW-26, TW4-16, TW4-18, TW4-19, TW4-20, TW4-22, and TW4-24, and TW4-26 had changes in concentration greater than 20%. Of the latter, MW-26, TW4-19 and TW4-20 are pumping wells. TW4-6 is located adjacent to pumping well TW4-4; TW4-10 and TW4-16 are located adjacent to pumping well MW-26; TW4-11 is located between pumping wells MW-4 and MW-26; TW4-18 is located adjacent to pumping well TW4-29. Fluctuations in concentrations at pumping wells and wells adjacent to pumping

wells, likely result, in part, from changes in pumping. The increase in concentration at TW4-24 from 1.4 to 1.8 μ g/L was only slightly greater than 20%, and likely the result of analytical error because the concentration is close to the detection limit. Decreases in concentrations at TW4-6 and TW4-26 are likely related to pumping at TW4-4.

Pumping well TW4-20 had the highest detected chloroform concentration. Since the last quarter, the chloroform concentration in TW4-20 increased from 24,000 μ g/L to 31,000 μ g/L, the concentration in adjacent pumping well TW4-19 increased from 1,200 μ g/L to 3,400 μ g/L, the concentration in nearby well TW4-21 increased slightly from 200 to 230 μ g/L, and the concentration in nearby well TW4-22 increased from 340 μ g/L to 1,300 μ g/L. Wells TW4-23 and TW4-25 remained non-detect for chloroform. TW4-24, located west of TW4-22, and TW4-25, located north of TW4-21, bound the chloroform plume to the west and north.

The chloroform concentration in TW4-6 decreased substantially from 430 μ g/L to 47 μ g/L since last quarter, placing the well outside the chloroform plume boundary. Concentrations at TW4-6 have been on a generally downward trend since initiation of pumping of TW4-4 in the first quarter of 2010 and have decreased from 1,000 μ g/L to 47 μ g/L since that time. TW4-6, installed in the second quarter of 2000, was the most downgradient temporary perched well prior to installation of temporary well TW4-23 in 2007 and temporary well TW4-26 in the second quarter of 2010. TW4-6 remained outside the chloroform plume between the second quarter of 2000 and the fourth quarter of 2008. TW4-6 likely remained outside the chloroform plume during this time due to a combination of 1) slow rates of downgradient chloroform migration in this area due to low permeability conditions and the effects of upgradient chloroform removal by pumping, and 2) natural attenuation. Because TW4-6 is again outside the plume boundary, TW4-6 and TW4-23 bound the chloroform plume to the south.

The slow rate of chloroform migration in the vicinity of TW4-6 is demonstrated by comparing the rate of increase in chloroform at this well to the rate of increase in the nearest upgradient well TW4-4. Concentrations at TW4-4 increased from non-detect to more than 2,200 μ g/L within only 2 quarters whereas 16 quarters were required for concentrations in TW4-6 to increase from non-detect to only 81 μ g/L. This behavior is consistent with hydraulic tests performed at TW4-4, TW4-6, and TW4-26 during the third quarter of 2010 that indicate a nearly two order of magnitude decrease in permeability downgradient of TW4-4. Chloroform migration rates in the vicinity of recently installed well TW4-26 are also expected to be relatively low due to upgradient pumping and low permeability conditions.

The chloroform concentration in TW4-16, located immediately downgradient of the chloroform plume, increased from 3 μ g/L to 15 μ g/L. Slight expansion and contraction of the chloroform plume boundaries in response to changes in upgradient pumping are expected to impact the concentrations at TW4-16. In addition, the southernmost boundary of the plume is now between TW4-4 and TW4-6 (located just north of southernmost temporary well TW4-26). Decreases in concentration at both TW4-6 (from 430 μ g/L to 47 μ g/L) and TW4-26 (from 5.4 μ g/L to 2 μ g/L) are likely due to upgradient pumping, in particular pumping at TW4-4.

5.0 LONG TERM PUMP TEST AT MW-4, MW-26, TW4-19, TW4-20, AND TW4-4 OPERATIONS REPORT

5.1 Introduction

As a part of the investigation of chloroform contamination at the Mill site, DUSA has been conducting a Long Term Pump Test on MW-4, TW4-19, MW-26, and TW4-20, and, since January 31, 2010, TW4-4. The purpose of the test is to serve as an interim action that will remove a significant amount of chloroform-contaminated water while gathering additional data on hydraulic properties in the area of investigation. The following information documents the operational activities during the quarter.

5.2 Pump Test Data Collection

The long term pump test for MW-4 was started on April 14, 2003, followed by the start of pumping from TW4-19 on April 30, 2003, from MW-26 on August 8, 2003, from TW4-20 on August 4, 2005, and from TW4-4 on January 31, 2010. Personnel from Hydro Geo Chem, Inc. were on site to conduct the first phase of the pump test and collect the initial two days of monitoring data for MW-4. DUSA personnel have gathered subsequent water level and pumping data.

Analyses of hydraulic parameters and discussions of perched zone hydrogeology near MW-4 has been provided by Hydro Geo Chem in a separate report, dated November 12, 2001, and in the May 26, 2004 *Final Report on the Long Term Pumping Test*.

Data collected during the quarter included the following:

- Measurement of water levels at MW-4, TW4-19, MW-26, and TW4-20 and, commencing regularly on March 1, 2010, TW4-4, on a weekly basis, and at selected temporary wells and permanent monitoring wells on a monthly basis.
- Measurement of pumping history, including:
 - pumping rates
 - total pumped volume
 - operational and non-operational periods.
- Periodic sampling of pumped water for chloroform and nitrate/nitrite analysis and other constituents.

5.3 Water Level Measurements

Beginning August 16, 2003, the frequency of water level measurements from MW-4, MW-26, and TW4-19 was reduced to weekly. From commencement of pumping TW4-20, and regularly after March 1, 2010 for TW4-4, water levels in these wells have been measured weekly. Depth to groundwater in all other chloroform contaminant investigation wells is monitored monthly. Copies of the weekly Depth to Water

monitoring sheets for MW-4, MW-26, TW4-19, TW4-20 and TW4-4 and the January and March monthly Depth to Water monitoring sheets for all of the chloroform contaminant investigation wells are included under Tab C. Monthly depth to water measurements for February are recorded in the Field Data Worksheets included under Tab D.

5.4 Pumping Rates and Volumes

Table 2 summarizes the recovered mass of chloroform by well per quarter and historically since the inception of the chloroform recovery program for the five currently-active pumping wells.

During the review of the weekly depth to water and flow measurements the Field Coordinator noted that there were inconsistencies in how the flow measurements were made. The flow measurements were adjusted by the Field Coordinator and retraining of the Field Staff was completed to assure correct and consistent recording of measurements.

5.4.1 MW-4

Approximately 76,247 gallons of water were pumped from MW-4 during the quarter. The average pumping rate from MW-4, when the pump was pumping, was approximately 3.7 gpm throughout the quarter. The well is not pumping continuously, but is on a delay device. The well purges for a set amount of time and then shuts off to allow the well to recharge. Water from MW-4 was transferred to the Cell 1 evaporation pond through a pipeline installed specifically for that purpose. During the January 4, 2011 weekly depth to water and flow measurements it was noted by Field Personnel that the flow meter was frozen. Additionally, during the February 21, 2011 depth to water and flow measurements it was noted by Field Personnel that the flow meter needed to be replaced. Field Personnel returned the following week and collected the measurements indicating that the flow meter had been replaced.

5.4.2 TW4-19

Approximately 454,608 gallons of water were pumped from TW4-19 during the quarter. The average pumping rate from TW4-19, when the pump was pumping, was approximately 7.5 gpm throughout the quarter. The pump in this well is operating on a delay. It pumps for approximately one and a half minutes and then is off for two to three minutes. Water from TW4-19 was directly transferred to the Cell 1 evaporation pond through a pipeline installed specifically for that purpose.

5.4.3 MW-26

Approximately 55,130 gallons of water were pumped from MW-26 during the quarter. The average flow rate from MW-26, when the pump was pumping, was approximately 5.3 gpm throughout the quarter. The well is not pumping continuously, but is on a delay device. The well now purges for a set amount of time and then shuts off to allow the well to recharge. The water is directly transferred to the Cell 1 evaporation pond through a pipeline installed specifically for that purpose. During the January 4, 2011 weekly depth

to water and flow measurements it was noted by Field Personnel that the flow meter was slow due to the cold weather. During the January 17, 2011 weekly depth to water and flow measurements it was noted by Field Personnel that the power was off to wells MW-26 and TW4-20. Field Personnel returned the following week and collected the measurements after the power had been restored.

5.4.4 TW4-20

Approximately 37,187 gallons of water were pumped from TW4-20 during the quarter. The average flow rate from TW4-20, when the pump was pumping, was approximately 6.7 gpm throughout the quarter. The well is not purging continuously but is on a delay device. The well pump is set on a water elevation device. When the water reaches a set point, the pump turns on until the water level drops to another set point. The water is directly transferred to the Cell 1 evaporation pond through a pipeline installed specifically for that purpose. During the January 17, 2011 weekly depth to water and flow measurements it was noted by Field Personnel that the power was off to wells MW-26 and TW4-20. Field Personnel returned the following week and collected the measurements after the power had been restored. During both the February 7, 2011 and the February 14, 2011 weekly depth to water and flow measurements it was noted by Field Personnel that the flow from the pump was slow. Repeat daily inspections on February 15, 2011 and February 16, 2011 indicated there was a potential issue with the pump. On February 16, 2011 the pump was replaced and the sealant on electrical connections was allowed to set. On February 17, 2011 the new pump was turned on but would not run for more than a few seconds. Upon observing that the new pump was not performing properly on February 17, 2011, the Mill environmental personnel removed and inspected the pump and discharge hose, noting that the hose as well as the new pump were now plugged with fines from the underground formation. New, larger tubing was ordered for the pump and the well was surged and bailed on February 21, 2011 by a drilling subcontractor. The well was repaired and put back into operation by 3:00pm on Monday February 21, 2011. Detailed descriptions of this incident are included in the notification letter from DUSA to UDEQ dated February 22, 2011.

5.4.5 TW4-4

Approximately 73,360 gallons were pumped from TW4-4 during the quarter. The average flow rate, when the pump was pumping, was 7.9 gpm. The well is not pumping continuously, but is set on a water elevation device. When the water reaches a set point, the pump turns on until the water level drops to another set point. The water is directly transferred to the Cell 1 evaporation pond through a pipeline installed specifically for that purpose.

5.5 Mass Removed

Chloroform removal was estimated as of the first quarter 2007. Since that estimation the mass removed by well for each quarter has been compiled in Table 2 below, indicating that a total of 554.3 pounds of chloroform have been removed to date.

5.6 Inspections

Denison has submitted an Operations and Maintenance Plan, Chloroform Pumping System, White Mesa Mill, Blanding, Utah, Revision 2.1 to UDEQ for approval on October 25, 2010. Upon approval of that plan, the Mill will commence documenting its required inspections of the operational status of the chloroform pumping wells on an inspection form. An example of the form as well as completed reports for the quarter will be included in future Chloroform reports upon approval by UDEQ. At the time of the publication of this report approval of the Operations and Maintenance Plan, Chloroform Pumping System, White Mesa Mill, Blanding, Utah, Revision 2.1 had not been received.

Operational problems in the pumping wells are summarized above.

5.7 Conditions That May Affect Water Levels in Piezometers

Water was added to the upper and lower wildlife diversion ponds during the quarter. The middle wildlife pond had no water added and is dry at this time.

6.0 CORRECTIVE ACTION REPORT

Necessary corrective actions identified during the current monitoring period are described below.

6.1 Rinsate Blank Sample Nitrate Levels

Identification and Definition of the Problem

Rinsate Nitrate Levels

DI water used for decontamination does not show the presence of nitrate. Contamination does not appear to be related to the nitrate presence in the preceding well that was purged. Rinsate blank samples following high concentration wells appear to be the same as rinsate blank samples following low concentration wells. Rinsate blank samples following purging of uncontaminated wells appear to also be contaminated with nitrate. Presence of nitrate in the rinsate blank samples is not consistent from one sampling event to the next.

Assignment of Responsibility for Investigation of the Problem

The problem is currently under investigation by the QA Manager.

Investigation and Determination of Cause of the Problem

Rinsate Blank Sample Nitrate Levels

To address the nitrate contamination, DUSA has investigated the potential sources of nitrate contamination. Nitrile gloves were removed from the rinsate collection process to

eliminate the potential for mobilizing nitrogen compounds present in nitrile gloves (possibly caused by leaching of nitrogen from the gloves by the nitric acid). In an effort to address the nitrate contamination, DUSA has reviewed the entire rinsate collection process and has made additional changes in an attempt to eliminate the source of the nitrate in the rinsate sample blanks. These additional changes are discussed below.

In addition, DUSA has requested in the revised QAP, submitted June 4, 2010, the removal of the nitric acid rinse step when samples are not collected for heavy metals, which will effectively remove the source of nitrate. DUSA will proceed with the removal of that step only upon approval of the QAP revision.

Determination of a Corrective Action to Eliminate the Problem

Rinsate Blank Sample Nitrate Levels

The nitrate source is most likely the nitric acid rinse used during decontamination procedures; however, additional conditions which may be contributing to the nitrate detections in the rinsate blank samples are being investigated. The additional items for investigation last quarter included replacement of all of the non-stainless steel portions of the purging equipment including the pump tubing and connectors. Based on low level detections this quarter, the replacement of the non-stainless steel portions of the sample train was not successful. Additional corrective actions to be implemented as a result of this quarter's exceedances includes the addition of an additional DI rinse to the decontamination process. Currently, the decontamination process is to pump 50 gallons of nitric acid, followed by pumping 50 gallons of soap/DI water and lastly pumping 50 gallons of DI water. During the Q2 2011 event a second 50 gallon rinse with DI water will be added. The rinsate blank will be collected from the second DI rinsate water after the second 50 gallons of DI are pumped.

Assigning and Accepting Responsibility for Implementing the Corrective Action

Rinsate Blank Sample Nitrate Levels

It will be the joint responsibility of the Director, Compliance and Permitting, and the Mill's sampling staff to implement the changes and to assess the data to determine if it has corrected the problems.

Implementing the Corrective Action and Evaluating Effectiveness

Rinsate Blank Sample Nitrate Levels

Nitrate sources will be removed after the removal of the nitric acid rinse from the decontamination procedure when heavy metals are not collected (assuming requisite changes to the QAP submitted June 4, 2010 are approved by the Executive Secretary). Additive effects from the nitric acid in the decontamination/rinsate procedure will be evaluated. To eliminate the cross contamination of the DI water from the nitric acid an additional rinse of the pump will be conducted.

Verifying That the Corrective Action Has Eliminated the Problem

Verification of the contribution from the purging equipment will be completed after the second quarter 2011 samples have been collected using the decontamination process and the data have been reviewed. If nitrate contamination persists then additional sources will be researched and the investigation will continue. Removal of the nitric acid from the decontamination procedure will be completed after the Executive Secretary's approval of the June 4, 2010 QAP revision is received.

6.2 Assessment of Previous Quarter's Corrective Actions

The fourth quarter 2010 report identified corrective actions for nitrate contamination in the rinsate blank samples. Nitrate contamination continues to be present in the rinsate blank samples and the investigation to determine the source of nitrate and the associated corrective actions are described above.

7.0 CONCLUSIONS AND RECOMMENDATIONS

The water level contour maps for the first quarter, 2011 indicate that effective capture of water containing high chloroform concentrations is occurring in the vicinity of pumping wells MW-4, MW-26, TW4-19, and TW4-20. TW4-4 has apparently not been pumped long enough for a well-defined capture zone to develop in the vicinity of this well. Furthermore, the capture zone associated with TW4-4 may be less apparent because of the low water level at adjacent well TW4-14. However, decreases in chloroform concentrations at TW4-6 and TW4-26, located downgradient of TW4-4, are likely related to TW4-4 pumping.

First quarter, 2011 chloroform concentrations at many of the wells with detected chloroform were within 20% of the values reported during the previous quarter, suggesting that variations are within the range typical for sampling and analytical error. Changes in concentration greater than 20% occurred in wells TW4-6, TW4-10, TW4-11, MW-26, TW4-16, TW4-18, TW4-19, TW4-20, TW4-22, and TW4-24, and TW4-26; the concentration in well TW4-16 increased from 3 μ g/L to 15 μ g/L and the concentration in well TW4-24 increased from 1.4 μ g/L to 1.8 μ g/L.

Of the wells showing changes in concentration greater than 20%, MW-26, TW4-19, and TW4-20 are pumping wells. TW4-6 is located adjacent to pumping well TW4-4; TW4-10 and TW4-16 are located adjacent to pumping well MW-26; TW4-11 is located between pumping wells MW-4 and MW-26; TW4-18 is located adjacent to pumping well TW4-20. Fluctuations in concentrations at pumping wells and wells adjacent to pumping wells likely results in part from changes in pumping. Fluctuations in concentration at well TW4-16, located immediately downgradient of the chloroform plume, likely result from slight expansion and contraction of the chloroform plume boundaries in response to changes in upgradient pumping. Between the current and previous quarters, the concentration in TW4-26, which is the most downgradient temporary well, decreased from $5.4 \mu g/L$ to $2 \mu g/L$.

The highest chloroform concentration was detected at pumping well TW4-20. Between the current and previous quarters, the chloroform concentration in TW4-20 increased from 24,000 μ g/L to 31,000 μ g/L, the concentration in adjacent pumping well TW4-19 increased from 1,200 μ g/L to 3,400 μ g/L, the concentration in nearby well TW4-21 increased slightly from 200 to 230 μ g/L, and the concentration in nearby well TW4-22 increased from 340 μ g/L to 1,300 μ g/L. Fluctuations in concentrations in these wells are likely related to their location near the suspected former office leach field source area in addition to variations in pumping in TW4-20 and nearby wells. Regardless of these measured fluctuations in chloroform concentrations, sampling of temporary wells TW4-24 (located west of TW4-22) and TW4-25 (located north of TW4-21), indicates these wells remain outside the chloroform plume and thus bound the plume to the west and north. Chloroform was not detected at TW4-25, and was detected at a concentration of 1.8 μ g/L at TW4-24.

The chloroform concentration at well TW4-6 decreased substantially from 430 μ g/L to 47 μ g/L since last quarter, placing the well outside the chloroform plume boundary. TW4-6 remained outside the plume between installation in the second quarter of 2000 and the fourth quarter of 2008. Although fluctuations in concentrations have occurred, this well likely remained outside the chloroform plume during this time due to a combination of 1) slow rates of downgradient chloroform migration in this area due to low permeability conditions and the effects of upgradient chloroform removal by pumping, and 2) natural attenuation. Decreases in concentrations at TW4-6 and TW4-26 since the last quarter are likely the result of upgradient pumping, in particular pumping at TW4-4. Chloroform remained non-detect at downgradient temporary well TW4-23. TW4-23 and TW4-6 (with a chloroform concentration of 47 μ g/L) bound the chloroform plume to the south.

Continued pumping of MW-4, MW-26, TW4-19, and TW4-20 is recommended. Pumping these wells, regardless of any short term fluctuations in concentrations detected at the wells (such as at TW4-20), helps to reduce downgradient chloroform migration by removing chloroform mass and reducing average hydraulic gradients, thereby allowing natural attenuation to be more effective. Continued pumping at TW4-4 is also recommended to improve capture of chloroform to the extent practical in the southern portion of the plume where low permeability conditions exist. The general decrease in chloroform concentrations at TW4-6 from 1,000 μ g/L to 47 μ g/L since the first quarter of 2010 is likely related to pumping at TW4-4.

8.0 ELECTRONIC DATA FILES AND FORMAT

DUSA has provided to the Executive Secretary an electronic copy of all laboratory results for groundwater quality monitoring conducted under the chloroform contaminant investigation during the quarter, in Comma Separated Values (CSV) format. A copy of the transmittal e-mail is included under Tab M.

9.0 SIGNATURE AND CERTIFICATION

This document was prepared by Denison Mines (USA) Corp. on May 20, 2011.

DENISON MINES (ØSA) CORP.

By:

David C. Frydenlund Vice President, Regulatory Affairs and Counsel

Certification:

I certify, under penalty of law, that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Davia C. Frydenlund Vice President, Regulatory Affairs and Counsel Denison Mines (USA) Corp.

Tables

~

l

ľ

Tab	le	1:	Summary	of	Well	Sampling	for	the Pe	eriod
-----	----	----	---------	----	------	----------	-----	--------	-------

Well	Sample Date	Date of Lab Report
MW-4	2/23/2011	3/11/2011
TW4-1	2/24/2011	3/11/2011
TW4-1R	2/23/2011	3/11/2011
TW4-2	2/24/2011	3/11/2011
TW4-3	2/15/2011	3/9/2011
TW4-3R	2/14/2011	3/9/2011
TW4-4	2/23/2011	3/11/2011
TW4-5	2/22/2011	3/11/2011
TW4-6	2/23/2011	3/11/2011
TW4-7	2/23/2011	3/11/2011
TW4-8	2/16/2011	3/9/2011
TW4-9	2/17/2011	3/9/2011
	2/16/2011	3/9/2011
TW4-10	2/23/2011	3/11/2011
TW4-11	2/23/2011	3/11/2011
TW4-12	2/15/2011	3/9/2011
TW4-13	2/15/2011	3/9/2011
TW4-14	2/15/2011	3/9/2011
TW4-15	2/23/2011	3/11/2011
TW4-16	2/22/2011	3/11/2011
TW4-16R	2/21/2011	3/11/2011
TW4-17	2/23/2011	3/11/2011
TW4-18	2/22/2011	3/11/2011
TW4-19	2/17/2011	3/9/2011
	2/23/2011	3/11/2011
TW4-21	2/22/2011	3/11/2011
TW4-22	2/23/2011	3/11/2011
TW4-22R	2/22/2011	3/11/2011
TW4-23	2/16/2011	3/9/2011
TW4-23R	2/15/2011	3/9/2011
TW4-24	2/17/2011	3/9/2011
TW4-25	2/16/2011	3/9/2011
TW4-26	2/22/2011	3/11/2011
TW4-60	2/23/2011	3/11/2011
TW4-65	2/17/2011	3/9/2011
TW4-70	2/23/2011	3/11/2011

All sample locations were sampled for Chloroform, Carbon Tetrachloride, Chloromethane, Methylene Chloride, Chloride and Nitrogen

"R" following a well number designates a rinsate sample collected prior to purging of the well of that number TW4-60 is a DI Field Blank, TW4-65 is a duplicate of TW4-24, and TW4-70 is a duplicate of TW4-11

......

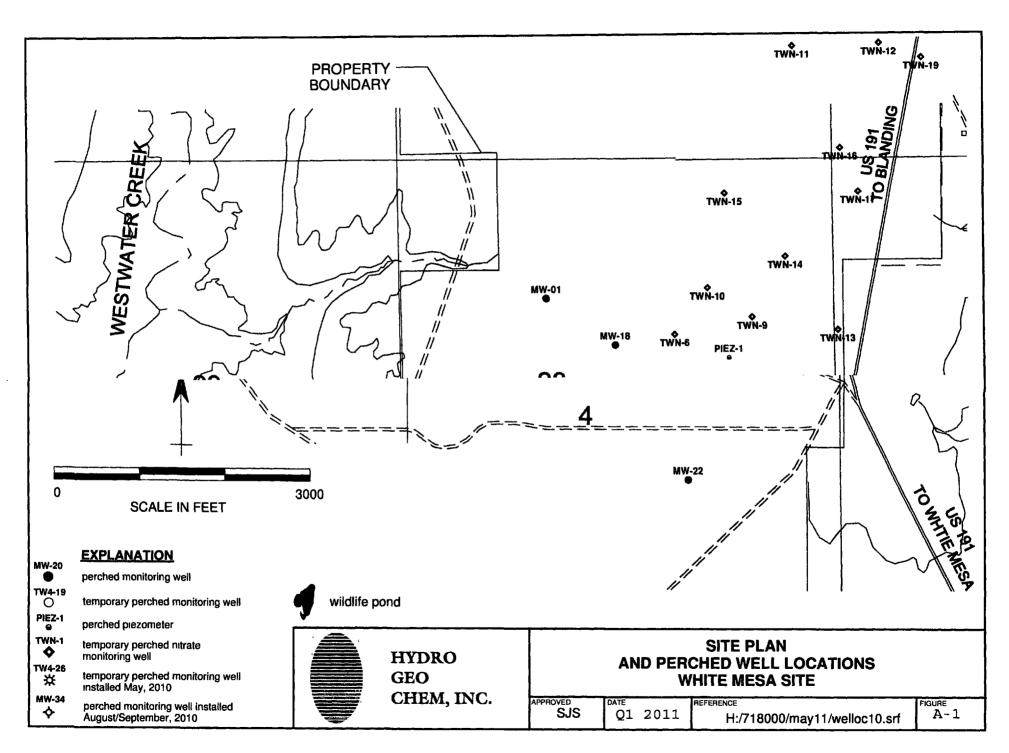
Highlighted wells are continuously pumped

Quarter	MW-4	TW4-15	TW4-19	TW4-20	TW4-4	Quarter Totals
Q1 2007	36.8	12.9	150.2	87.0	NA	286.9
Q2 2007	1.4	0.1	0.0	2.5	NA	4.0
Q3 2007	2.2	0.8	2.9	3.1	NA	9.0
Q4 2007	1.7	1.0	3.1	4.8	NA	10.6
Q1 2008	1.7	0.4	4.6	7.2	NA	13.8
Q2 2008	1.3	0.5	3.2	9.9	NA	14.8
Q3 2008	1.2	0.3	15.9	9.3	NA	26.8
Q4 2008	1.3	0.3	20.7	0.4	NA	22.7
Q1 2009	1.7	0.4	4.3	3.6	NA	10.0
Q2 2009	6.8	0.2	3.7	2.8	NA	13.5
Q3 2009	1.5	0.4	11.1	5.5	NA	18.5
Q4 2009	4.8	0.6	17.8	26.1	NA	49.4
Q1 2010	0.9	0.4	2.7	0.4	NA	4.5
Q2 2010	1.5	1.0	6.8	5.9	1.4	16.5
Q3 2010	1.3	1.2	2.0	4.9	1.3	10.6
Q4 2010	1.1	0.5	7.7	7.4	1.2	17.9
Q1 2011	1.1	0.2	12.9	9.6	1.1	24.9
Well Totals (pounds)	67.1	21.0	256.6	180.8	4.0	554.3

Table 2 Chloroform Mass Removal Per Well Per Quarter

INDEX OF TABS

- Tab A Site Plan and Perched Well Locations White Mesa Site
- Tab B Order of Sampling and Field Data Worksheets
- Tab C Weekly and Monthly Depth to Water Data


Tab D Kriged Current Quarter Groundwater Contour Map, Capture Zone Map, Capture Zone Details Map, and Depth to Water Data

- Tab E Kriged Previous Quarter Groundwater Contour Map
- Tab F Hydrographs of Groundwater Elevations Over Time for Chloroform Monitoring Wells
- Tab G Depths to Groundwater and Elevations Over Time for Chloroform Monitoring Wells
- Tab H Laboratory Analytical Reports
- Tab I Quality Assurance and Data Validation Tables
 - I-1 Field Data QA/QC Evaluation
 - I-2 Holding Time Evaluation
 - I-3 Receipt Temperature Check
 - I-4 Analytical Method Check
 - I-5 Reporting Limit Evaluation
 - I-6 Trip Blank Evaluation
 - I-7 QA/QC Evaluation for Sample Duplicates
 - I-8 QC Control Limits for Analyses and Blanks
 - I-9 Rinsate Check
- Tab J Kriged Current Quarter Chloroform Isoconcentration Map
- Tab K Analyte Concentration Data Over Time
- Tab L Chloroform Concentration Trend Graphs
- Tab M CSV Transmittal Letter

Tab A

,

Site Plan and Perched Well Locations White Mesa Site

Tab B

Order of Sampling and Field Data Worksheets

OENISONDIA MINES ATTACHM WHITE MESA UR FIELD DATA WORKSHEET	ANIUM MILL See instruction					
Description of Sampling Event: 1st Quarter 6	uloroform 2011					
Location (well name): MW-H	and initials: Garrin Palmer 16P					
Date and Time for Purging 2/23/2011 and	Sampling (if different)					
Well Purging Equip Used: Repump or Debailer W	Vell Pump (if other than Bennet)					
Sampling Event Quarterly Chloroton Prev. V	Well Sampled in Sampling Event $Twy-2$					
pH Buffer 7.0 7.0 pH	1 Buffer 4.0					
Specific Conductance 499 µMHOS/cm Well Depth(0.01ft):						
Depth to Water Before Purging 69.52 Casing Volume (V) 4" Well: 0 (.653h) 3" Well: 0 (.367h)						
Conductance (avg) pH of	Water (avg) 6: 41					
Well Water Temp. (avg) 5.14 Redox Potentia	l (Eh) 388 Turbidity					
Weather Cond. Sunny	Ext'l Amb. Temp. *C (prior sampling event) 2°C					
Time 1254 Gal. Purged	Time Gal. Purged					
Conductance 1748 pH 6.91	Conductance pH					
Temp. °C [15.14]	Temp. °C					
Redox Potential Eh (mV) 339	Redox Potential Eh (mV)					
Turbidity (NTU)	Turbidity (NTU)					
Time Gal, Purged	Time Gal. Purged					
Conductance pH	Conductance pH					
Temp. °C	Temp. °C					
Redox Potential Eh (mV)	Redox Potential Eh (mV)					
Turbidity (NTU)	Turbidity (NTU)					

Mill - Groundwater Discharge Permit

Groundwater Monitoring Quality Assurance Plan (QAP)

Volume of Water Purged

gallon(s)

T = 2V/Q =

Time to evacuate two casing volumes (2V)

. C

. .

NIA

0

Pumping Rate Calculation

Flow Rate (Q), in gpm. S/60 =

Ľ

Number of casing volumes evacuated (if other than two)

If well evacuated to dryness, number of gallons evacuated

Name of Certified Analytical Laboratory if Other Than Energy Lab NIA

Type of Sample	Sample Taken		Sample Vol (indicate if other than as	Filtered		Preservative	Preservative Added	
	Y	N	specified below)	Y	N	- Type	Y	N
VOCs	53		3x40 ml		2	HCL		
Nutrients	Ø		100 ml		Ø	H2\$04	No.	
Heavy Metals		۵	250 ml			HNO3		
All Other Non Radiologics			250 ml			No Preserv.		
Gross Alpha			1,000 ml			HNO3		
Other (specify)			Sample volume	Ö	X			
Chloride		• • •	· · · · · · · · · · · · · · · · · · ·			If preservative is us Type and Quantity Preservative:		9
	J ,		•			See	instructio	on
						· F		

Samples Left site at 1301. 3 1 , (اے د Samples were taken from A continous

Do not touch this cell (SheetName)

White Mesa Mill Field Data Worksheet for Groundwater

z

Date: 03/22/2010 Rev. 6

2 of 2 Capturx compariale with Aucto-FUNCTIONALITY

DENISON DALA MINES FIELD DATA WORKSHEET	ANIUM MILL See instruction				
Description of Sampling Event: 1st Quarter C	nloraform 2011				
Location (well name): <u>۲</u> س۲-۱	and initials: <u>Corris. Patmer/4P</u>				
Date and Time for Purging 2/23/2011 and	Sampling (if different) 2/24/2011				
Well Purging Equip Used: Dump or D bailer W	/ell Pump (if other than Bennet)				
Sampling Event Quarterly Chloroform Prev. V	Vell Sampled in Sampling Event $TW4-7$				
pH Buffer 7.0 7.0 pH	HBuffer 4.0 4.0				
Specific Conductance 999 µMHOS/ cm	Well Depth(0.01ft):				
Depth to Water Before Purging 63.54 Casing Volume (V) 4" Well: 30.32 (.653h) 3" Well: 0 (.367h)					
Conductance (avg) 1477 pH of V	Water (avg) 6,34				
Well Water Temp. (avg) 3.18 Redox Potentia	1 (Eh) 405 Turbidity 202.6				
Weather Cond. SUMMY	Ext'l Amb. Temp. °C (prior sampling event)				
Time 1052 Gal. Purged 17	Time 1053 Gal. Purged 34				
Conductance 2101 pH 6.38	Conductance 2013 pH 6.33				
Temp. °C 12.43	Temp. °C 13.61				
Redox Potential Eh (mV)	Redox Potential Eh (mV) 405				
Turbidity (NTU) 230.4	Turbidity (NTU) [136.7]				
Time 1054 Gal. Purged 51	Time Gal. Purged				
Conductance 1819 pH 6:32	Conductance pH				
Temp. °C [3-00]	Temp. °C				
Redox Potential Eh (mV)	Redox Potential Eh (mV)				
Turbidity (NTU)	Turbidity (NTU)				

Date: 03/22/2010 Rev. 6

Mill - Groundwater Discharge Permit Groundwater Monitoring Quality Assurar	ice Plan (QAP)						Date: 03	/22/2010
Volume of Water Purged	59.	16	gallon(s)					
Pumping Rate Calculatio	n							
Flow Rate (Q), in gpm. S/60 = 17			Time to evac T = 2V/Q =			volumes (2V)		
Number of casing volum	es evacuate	ed (if oth	er than two)	1.9	5			
If well evacuated to dryn	ess numbe	r of gall	ons evacuated	59.	16			
			ond oraclated	<u></u>	101			
Name of Certified Analy	tical Labor	atory if (Other Than Energy Lab	NI.	A.			
Type of Sample	Sample	e Taken	Sample Vol (indicate if other than as	Fih	ered	Preservative		vative ded
	Y	N	specified below)	Y	N	Туре	Y	N
/OCs	53		3x40 ml		N	HCL	, X	Ľ,
Nutrients	<u>X</u>		100 ml		ß	H2SO4	• 🖬	
leavy Metals			250 ml		- 🗖	HNO3		
All Other Non Radiologics			250 ml			No Preserv.		
Gross Alpha		· 🗗	1,000 ml			HNO3		<u> </u>
Other (specify)			Sample volume	Ö	G	·		
Chloride		-	.	L , . <u>.</u> . <u>.</u>	<u> </u>	If preservative is us Type and Quantity Preservative:		y
			, -					
						-		
						See	instructio	n
Comment								
				s. pre	SCA	for purge	2. Pur	ze.

Arrived	on site	at 075	52. Garrin A at 080 0802.	, Tanner	and	Ryan	S. Pre	sent for	sampling
Samples	were	collecte	h at 080	0. Depth	+0	water	before	sampling	was
63.62.	Left s	ite at	0802.				*		

Do not touch this cell (SheetName)

\$1.1366 2 198 - CH-QN2

Date: 03/22/2010 Rev. 6

ATTACHM	ENT 1 Attachment 1					
DENISON DAA WHITE MESA URA						
MINES FIELD DATA WORKSHEET						
Description of Sampling Event: 15+ Quarter C	Sampler Name					
Location (well name): TW4-IR	and initials: Garris Palmer / GP					
Date and Time for Purging 2/23/2011 and	Sampling (if different)					
Well Purging Equip Used: 😡 pump or 🔲 bailer W	Vell Pump (if other than Bennet)					
Sampling Event Quarterly chloroform Prev. V	Vell Sampled in Sampling Event $TWH-7$					
pH Buffer 7.0 pH	Buffer 4.0					
Specific Conductance 999 µMHOS/ cm	Well Depth(0.01ft):					
Depth to Water Before Purging VIA Casing Volume (V) 4" Well: O (.653h) 3" Well: O (.367h)						
Conductance (avg) 4.8 pH of	Water (avg) 4.74					
Well Water Temp. (avg) 9, 81 Redox Potentia	l (Eh) 460 Turbidity O					
Weather Cond. SUMMY	Ext'l Amb. Temp. °C (prior sampling event)					
Time 0950 Gal. Purged 150	Time Gal. Purged					
Conductance 14.8 pH 4.74	Conductance pH					
Temp. °C 9.81	Temp. °C					
Redox Potential Eh (mV) 460	Redox Potential Eh (mV)					
Turbidity (NTU)	Turbidity (NTU)					
Time Gal. Purged	Time Gal. Purged					
Conductance pH	Conductance pH					
Temp. °C	Temp. °C					
Redox Potential Eh (mV)	Redox Potential Eh (mV)					
Turbidity (NTU)	Turbidity (NTU)					

Date: 03/22/2010 Rev. 6

Volume of Water Purged	150	gallon(s)				
Pumping Rate Calculation	<u>n</u>					
······································	-					
Flow Rate (Q), in gpm.	·	Time to eva	cuate two casing	g volumes (2V)		
S/60 = 17]	T = 2V/Q =	NIA			
Marchan (·			
Number of casing volume	s evacuated (if oth	er than two)				
If well evacuated to dryne	ess, number of gall	ons evacuated	NIA			
Name of Certified Analyt	ical Laboratory if (Other Than Energy La	MIA			
······································	Sample Taken	Sample Vol (indicat	Filtered	Preservative	Preser	vative
Type of Sample		if other than as	3	Type	Ado	
	Y N	specified below)	Y N		Y	<u>N</u>
OCs		3x40 ml				
utrients		100 ml			<u> X</u>	
eavy Metals		250 ml				
Il Other Non Radiologics		250 ml			<u> </u>	
ross Alpha		1,000 ml		HNO3		
ther (specify)		Sample volume		- 4 n - 3 		
Chloride		· · ·		If preservative is us Type and Quantity Preservative:	• •	
	-	· · · · · ·	· · ·			
omment	-		۰ ,	See	instructio	n
Arrived on site a	+ (7930 in	and Rive	S ARRAS	ZAL FOR CIAS	440	·····
	may 0	and En instances	of Aria	water 50 1		0
linsate began at	E Carlis Fump	AS OF AT 2	JALOF SAL	nales were	Carlos Carla	ted
		~S 07 0. 0				100
	at 1015.			`		
950, Left site				•		
9450, Left site	,					
950, Left site	· · ,	•		*		
9450, Left site	, · · ,			-	. ·	
9950, Left site				- 		
9450, Left site		this cell (SheetName)		-	 	

White Mesa Mill Field Data Worksheet for Groundwater

DENISON DAA WHITE MESA UR FIELD DATA WORKSHEET	ANIUM MILL See instruction					
Description of Sampling Event: 1st Quarter C						
Location (well name): TWH-2	and initials: Garrin Palmer/GP					
Date and Time for Purging 2/23/2011 and	Sampling (if different) 2/24/2011					
Well Purging Equip Used: 🚺 pump or 🔲 bailer 🛛 V	Vell Pump (if other than Bennet) Grundfos					
Sampling Event Quarterly Chloroform Prev.	Well Sampled in Sampling Event $Tw 4 - 1$					
pH Buffer 7.0 7.0 pl	H Buffer 4.0					
Specific Conductance 999 µMHOS/ cm	Well Depth(0.01ft): 120					
Depth to Water Before Purging 66.71 Casing Volume (V) 4" Well: 34.74 (.653h) 3" Well: 0 (.367h)						
Conductance (avg) 2317 pH of	Water (avg) 6.49					
Well Water Temp. (avg) 13.74 Redox Potentia	I (Eh) 356 Turbidity 49.1					
Weather Cond.	Ext'l Amb. Temp. °C (prior sampling event) 3°C					
Time 1221 Gal. Purged 17	Time 1222 Gal. Purged 34					
Conductance 2342 pH 7.16	Conductance 2292 pH 6.82					
Temp. °C 13,51	Temp. °C [13.97]					
Redox Potential Eh (mV) 358	Redox Potential Eh (mV) 354					
Turbidity (NTU) 50.3	Turbidity (NTU)					
Time Gal. Purged	Time Gal, Purged					
Conductance pH	Conductance pH					
Temp. °C	Temp. °C					
Redox Potential Eh (mV)	Redox Potential Eh (mV)					
Turbidity (NTU)	Turbidity (NTU)					

White Mesa Mill
 Field Data Worksheet for Groundwater

!

01 1)14 2 876 - CH Cr2 Fort 11982/10 / CH CM 2044.0120001001 + 101101 + 10 40 fort 14552000

Date: 03/22/2010 Rev. 6

Volume of Water Purged	40.8	gallon(s)					
Pumping Rate Calculation	l						
Flow Rate (Q), in gpm. S/60 = 17]	Time to evace $T = 2V/Q =$	uate two casing vo	olumes (2V)]			
Number of casing volumes	s evacuated (if oth	er than two)	1.17				
If well evacuated to dryne:	ss, number of galle	ons evacuated	40.8				
Name of Certified Analyti	cal Laboratory if (Other Than Energy Lab	NIA				
Type of Sample	Sample Taken	Sample Vol (indicate if other than as	Filtered	Preservative Type	Preserv Add Y	ed	
WOG	Y N	specified below)	Y N	IICI		<u>N</u>	
VOCs		3x40 ml		HCL			
Nutrients		100 ml		H2SO4			
Heavy Metals		250 ml		HNO3			
All Other Non Radiologics		250 ml		No Preserv.			
Gross Alpha		1,000 ml		HNO3			
Other (specify)		Sample volume		~		B	
Chloride If preservative is used, specify Type and Quantity of Preservative:							
Comment See instruction							
Arrived on site at at 1223. Pump ra Water was clear the overpumping Arrived on site at Depth to wate 1 at 0815. Left s	n for 2 m throughout field shed 0808. Garn before sam ite at 08	inutes and 4 purge. Para 4. Left site n, Tanner and 1 ples was 66. 17.	10 Seconds meters we at 1236. Ryan s. all	, well ran d ere copied present fo	try. . fron or sam	n elinai	
		this cell (SheetName)					

j

DENISONDIA MINES FIELD DATA WORKSHEET	ANIUM MILL See instruction				
Description of Sampling Event: 1st Quarter Ch					
Location (well name): TW4-3	and initials: Garrin Pamer/GP				
Date and Time for Purging 0.2/14/2011 and	Sampling (if different) 02/15/2011				
Well Purging Equip Used: M pump or D bailer W	/ell Pump (if other than Bennet)				
Sampling Event Quarterly chloroform Prev. V	Vell Sampled in Sampling Event Twy-3R				
pH Buffer 7.0 7.0 pH	Buffer 4.0 4.0				
Specific Conductance 999 µMHOS/ cm	Well Depth(0.01ft):				
Depth to Water Before Purging 49.41 Casing Volume (V) 4" Well: 59.78 (.653h) 3" Well: 11 (.367h)					
Conductance (avg) 1586 pH of V	Water (avg) 6.42				
Well Water Temp. (avg) 3.89 Redox Potentia	I (Eh) 404 Turbidity 9.3				
Weather Cond. Sunny	Ext'l Amb. Temp. °C (prior sampling event)				
Time 1055 Gal, Purged 34	Time 1056 Gal. Purged 51				
Conductance 1673 pH 7.00	Conductance 1555 pH 6.89				
Temp. °C 13.47	Temp. °C [3.87]				
Redox Potential Eh (mV) 405	Redox Potential Eh (mV) 397				
Turbidity (NTU)	Turbidity (NTU) 7.9				
Time 1057 Gal. Purged 68	Time Gal. Purged				
Conductance 1530 pH 6.87	Conductance pH				
Temp. °C 13.84	Temp. °C				
Redox Potential Eh (mV)	Redox Potential Eh (mV)				
Turbidity (NTU)	Turbidity (NTU)				

Date[.] 03/22/2010 Rev. 6

Groundwater Monitoring Quality Assurance	Plan (QAP)							
Volume of Water Purged	77.0	21] gallon(s)					
Pumping Rate Calculation								
Flow Rate (Q), in gpm. S/60 = 7			Time to evac T = $2V/Q$ =			olumes (2V) 7. <i>03</i>		
Number of casing volumes	evacuate	ed (if oth	er than two)	1.29				
If well evacuated to drynes	s, numbe	r of gallo	ons evacuated	77.	01			
Name of Certified Analytic	al Labor	atory if (Other Than Energy Lab	NIA				
Type of Sample	Sample	e Taken	Sample Vol (indicate if other than as	Filt	ered	Preservative		vative ded
	Y	N	specified below)	Y	N	- Type	Y	N
VOCs	X	Ö	3x40 ml		Ç2	HCL	₿ X	
Nutrients	X		100 ml		⊠	H2SO4	X	
Heavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 ml			No Preserv.		
Gross Alpha			1,000 ml			HNO3		· 🔲 ·
Other (specify)	C3		Sample volume		Ø		٥	Ŕ
Chloride If preservative is used, specify Type and Quantity of Preservative:								
See instruction							on	
Comment Arrived on site at	1021	ľ.	And Proce C	Deres	AL E	A DUMA AL	C	OLIAA
Arrived on site at	, احد مما	Oarri	n and kyan >.	7 > c		ALL RZ C	, and	פיייי
event. Purge began	r at	1053.	rump ran tor	4 m.	nu res	, and 52 20	~ + 11	mi l
Well ran dry. We Parameters were take Arrived on site at	nter u en fron t 1305	Nas nover 5. Garr	clear through o PUMPing Ficht sh nin, Fanner and	eet. Rya	ns.	an present	for s	ampling.
Depth to water w	as 49	. 26, .	samples were	tak	er a	+ 1310. Let	rt 5i	te
at 1315.			••• •.=· ·····					
	Do not touch this cell (SheetName)							

DENISON DATACHM WHITE MESA UR FIELD DATA WORKSHEET	ANIUM MILL See instruction						
Description of Sampling Event: 1st Quarter C	hloroform 2011						
Location (well name): Tいリー3R	and initials: Garrin Palmer/GP						
Date and Time for Purging 2/14/2011 and Sampling (if different)							
Well Purging Equip Used: 😡 pump or 🗖 bailer 🛛 🕅	Vell Pump (if other than Bennet)						
Sampling Event Quarterly chloroform Prev. V	Vell Sampled in Sampling Event TWH						
pH Buffer 7.0 7.0 pH	I Buffer 4.0 4, 0						
Specific Conductance 999 µMHOS/ cm	Well Depth(0.01ft):						
Depth to Water Before Purging MA Casing Volume (V) 4" Well: (.653h) 3" Well: (.367h)							
Conductance (avg) 11.2 pH of T	Water (avg) 7.9						
Well Water Temp. (avg) [13.89 Redox Potentia	l (Eh) 294 Turbidity O						
Weather Cond. Sunny	Ext'l Amb. Temp. °C (prior sampling event)						
Time 1000 Gal. Purged 150	Time Gal. Purged						
Conductance [1.2 pH 7.9	Conductance pH						
Temp. °C [3.99]	Temp. °C						
Redox Potential Eh (mV)	Redox Potential Eh (mV)						
Turbidity (NTU)	Turbidity (NTU)						
Time Gal. Purged	Time Gal. Purged						
Conductance pH	Conductance pH						
Temp. °C	Temp. °C						
Redox Potential Eh (mV)	Redox Potential Eh (mV)						
Turbidity (NTU)	Turbidity (NTU)						

••

Volume of Water Purged 150

gallon(s)

T = 2V/Q =

Time to evacuate two casing volumes (2V)

NIA

NIA

Pumping Rate Calculation

Flow Rate (Q), in gpm. S/60 = 17

Number of casing volumes evacuated (if other than two)

If well evacuated to dryness, number of gallons evacuated

Name of Certified Analytical Laboratory if Other Than Energy Lab

Type of Sample	Sample Taken		ple Taken Sample Vol (indicate if other than as		ered	Preservative	Preservative Added	
	Y	N	specified below)	Y	N	Туре	Y	N
VOCs			3x40 ml		Ø	HCL	X	
Nutrients	X		100 ml		X	H2SO4	X	
Heavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 ml	- 🖸		No Preserv.		
Gross Alpha			1,000 ml			HNO3		
Other (specify)	Ø		Sample volume		53			Ø
chloride						If preservative is us Type and Quantity Preservative:		/
Comment	00U0	P*		0		J. J.	instructio	
Arrived on site at	0440.	Garri	n and kyon 3	rres	ert	TOP THOSATC	C. O	vie 1 sata
began at 0951. Pu and 50 Gallons of at 1015.	mped F D.I.	50 C Wat	er. Samples w	wate cre c	er, 50 collect	ted at 1000	soup). Lef	t site
AT 1012.	.*		-	· .	•			
			· ·					
	Do n	ot touch	this cell (SheetName)					
ಗ್ರಾಹ ಯುವರ್ ಸ್ಥಾರ್ಗಳು ಎಲ್ಲಿ ಬಿಡಿಗಳು								-

Field Data Worksheet for Groundwater

DENISONDAA MINES WHITE MESA UR FIELD DATA WORKSHEET	ANIUM MILL See instruction						
Description of Sampling Event: 115+ Quarter C	hloroferm 2011						
Location (well name) TW4-4	and initials: Garrin Palmer/GP						
Date and Time for Purging 2/23/2011 and	Sampling (if different)						
Well Purging Equip Used: 🔯 pump or 🔲 bailer 🛛 V	Vell Pump (if other than Bennet)						
Sampling Event Quarterly Chloroform Prev. V	Well Sampled in Sampling Event TWH-15						
pH Buffer 7.0 7.0 pH	H Buffer 4.0						
Specific Conductance 999 µMHOS/ cm Well Depth(0.01ft): 112							
Depth to Water Before Purging 69.32Casing Volume (V)4" Well:0(.653h)3" Well:0(.367h)							
Conductance (avg) 2311 pH of	Water (avg) 6.65						
Well Water Temp. (avg) 6:03 Redox Potentia	1 (Eh) 251 Turbidity 15,6						
Weather Cond. Sunny	Ext'l Amb. Temp. °C (prior sampling event) 2°C						
Time 1349 Gal. Purged	Time Gal. Purged						
Conductance 23/1 pH 6.65	Conductance pH						
Temp. °C	Temp. °C						
Redox Potential Eh (mV)	Redox Potential Eh (mV)						
Turbidity (NTU) 75.6	Turbidity (NTU)						
Time Gal. Purged	Time Gal. Purged						
Conductance pH	Conductance pH						
Temp. °C	Temp. °C						
Redox Potential Eh (mV)	Redox Potential Eh (mV)						
Turbidity (NTU)	Turbidity (NTU)						

Volume of Water Purged

gallon(s)

T = 2V/O =

Time to evacuate two casing volumes (2V)

0

NIA

Pumping Rate Calculation

Flow Rate (Q), in gpm. S/60 =

Number of casing volumes evacuated (if other than two)

If well evacuated to dryness, number of gallons evacuated

Name of Certified Analytical Laboratory if Other Than Energy Lab

Type of Sample	Sample Taken		Sample Vol (indicate if other than as	Filtered		Preservative	Preservative Added	
	Y	N	specified below)	Y	N	Туре	Y	N
VOCs	×.		3x40 ml		53	HCL	X	
Nutrients			100 ml		X	H2SO4	Ø	
Heavy Metals			250 mi			HNO3		Ū
All Other Non Radiologics		G	250 ml			No Preserv.	Ω.,	
Gross Alpha			1,000 ml		: 🖸	HNO3	Ď	
Other (specify)	53		Sample volume		X			
Chloride						If preservative is us Type and Quantity Preservative:		Y

Comment

01 1 10

See instruction

Arrived on site at 1340. Garrin and Ryan S. Present for Sampling event. Semples were collected at 1350. Left site at 1352. Water had tiny red Particles, color looked to be normal of water. Continous pumping Well.

Do not touch this cell (SheetName)

White Mesa Mill Field Data Worksheet for Groundwater

DENISONDIA MINES ATTACHM WHITE MESA UR FIELD DATA WORKSHEET	ANIUM MILL See instruction						
Description of Sampling Event: 1st Quarter Ch	loroform 2011						
Location (well name): TW4-5	Sampler Name and initials: Garrin Palmer / GP						
Date and Time for Purging 2/21/2011 and	Sampling (if different) 2/22/2011						
Well Purging Equip Used: 🔀 pump or 🔲 bailer W	Vell Pump (if other than Bennet)						
Sampling Event Quarterly Chleroform Prev. V	Vell Sampled in Sampling Event $TWH-26$						
pH Buffer 7.0 7.0 pH	Buffer 4.0 네. 0						
Specific Conductance 999 µMHOS/ cm	Well Depth(0.01ft):						
Depth to Water Before Purging 56.59 Casing Volume (V) 4" Well: (.653h) 3" Well: (.367h)							
Conductance (avg) 1394 pH of	Water (avg) 6.60						
Well Water Temp. (avg) 14.36 Redox Potentia	1 (Eh) 351 Turbidity 26.						
Weather Cond. Cloudy	Ext'l Amb. Temp. *C (prior sampling event)						
Time 1050 Gal. Purged 187	Time 1051 Gal. Purged 204						
Conductance 1409 pH 6-61	Conductance 1400 pH 6.61						
Temp. °C [14.34]	Temp. °C 14.38						
Redox Potential Eh (mV) 356	Redox Potential Eh (mV) 353						
Turbidity (NTU)	Turbidity (NTU) 29.8						
Time 1052 Gal. Purged 221	Time 1053 Gal. Purged 238						
Conductance 1389 pH 6,61	Conductance 1381 pH 6.60						
Temp. °C [14.38]	Temp. °C <u>14.36</u>						
Redox Potential Eh (mV) 350	Redox Potential Eh (mV) 348						
Turbidity (NTU)	Turbidity (NTU)						

Date: 03/22/2010 Rev. 6

Volume of Water Purged	241.74

gallon(s)

T = 2V/Q =

Time to evacuate two casing volumes (2V)

VIA

4.86

Pumping Rate Calculation

Flow Ra	te (Q), in	gpm.
S/60 =	17	

Number of casing volumes evacuated (if other than two)

If well evacuated to dryness, number of gallons evacuated

Name of Certified Analytical Laboratory if Other Than Energy Lab

Type of Sample	Sample	e Taken	Sample Vol (indicate if other than as	Filt	ered	Preservative Type	Ad	vative ded
	Y	N	specified below)	Y	N	Турс	Y	N
VOCs			3x40 ml		Ø	HCL	Ø	
Nutrients	図		100 ml		図	H2SO4	×	
Heavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 ml			No Preserv.		. 🗖
Gross Alpha			1,000 ml			HNO3		
Other (specify)	<u>ک</u>	· 🗖	Sample volume	, D	, هر			ß
Chloride					·	If preservative is us Type and Quantity of Preservative:		
Comment						'n		
Arrived on site at 1021, Garrin and Ryan S. present for furge. Purge began at 1039. Pump ran for 14 minutes and 22 Seconds. Water was clear throughout Purge. Depth to water after purge was 57.55. Parameters were copied from the overpumping field sheet, Left site at 1105. Arrived on site at 0811. Garrin and Ryan S. Present for sampling event. Depth to water before samples were collected was 56.67. Samples Were collected at 0817. Left site at 0822.								
Do not touch this cell (SheetName)								

Date: 03/22/2010 Rev. 6

АТТАСНМ	ENT I Attachment 1						
OENISON JAA WHITE MESA UR MINES FIELD DATA WORKSHEET							
Description of Sampling Event: 15t QUARTER (
-	Sampler Name						
Location (well name): TW4-6	and initials: Garrin Patmer 16P						
Date and Time for Purging 2/22/2011 and	Sampling (if different)						
Well Purging Equip Used: 🔂 pump or 🔲 bailer 🛛 🕅	/ell Pump (if other than Bennet)						
Sampling Event Querterly Chloroform Prev. V	Vell Sampled in Sampling Event TW4-22						
pH Buffer 7.0 7.0 pH	I Buffer 4.0 4.0						
Specific Conductance 999 µMHOS/ cm	Well Depth(0.01ft): 97.5						
Depth to Water Before Purging 75, 30 Casing Volume (V) 4" Well: 4" (367h)							
Conductance (avg) 3565 pH of	Water (avg) 6.83						
Well Water Temp. (avg) 13.69 Redox Potentia	l (Eh) 381 Turbidity 2.88						
Weather Cond. Sunny	Ext'l Amb. Temp. °C (prior sampling event) 2 °C						
Time 1155 Gal. Purged 17	Time 1156 Gal. Purged 34						
Conductance 3644 pH 7.02	Conductance 3482 pH 6.64						
Temp. °C 13.60	Temp. °C 13, 79						
Redox Potential Eh (mV) 385	Redox Potential Eh (mV) 378						
Turbidity (NTU)	Turbidity (NTU) 35.2.0						
Time Gal. Purged	Time Gal. Purged						
Conductance pH	Conductance pH						
Temp. °C	Temp. °C						
Redox Potential Eh (mV)	Redox Potential Eh (mV)						
Turbidity (NTU)	Turbidity (NTU)						

81.3346.2.364 - Ch-CW into 11103116 / Ch-CM Iven 1-Tamplate-[121] - Pristan 12/4/2010 12:30 M from Intimuto10

Date: 03/22/2010 Rev. 6

Volume of Water Purged

gallon(s)

T = 2V/Q =

Time to evacuate two casing volumes (2V)

35.02

1.70

Pumping Rate Calculation

Flow Rate (Q), in gpm. S/60 = 17

Number of casing volumes evacuated (if other than two)

35.02

If well evacuated to dryness, number of gallons evacuated

Name of Certified Analytical Laboratory if Other Than Energy Lab

Type of Sample	Sample Taken		Sample Vol (indicate if other than as	Filt	ered	Preservative	Preservative Added	
	Y	N	specified below)	Y	N	Туре	Y	N
VOCs	N N		3x40 ml		8	HCL	X	
Nutrients	X		100 ml		. 🛛	H2SO4	Ø	
Heavy Metals			250 ml		, D	HNO3		
All Other Non Radiologics	Ū	· 🗆	250 ml			No Preserv.		
Gross Alpha			1,000 ml			HNO3		
Other (specify)	X		Sample volume		3	-	۵	8
Chloride If preservative is used, specify Type and Quantity of Preservative:							/	
Comment See instruction								
Arrived on site at 1140. Garrin and Ryan S. present for purge. Purge began at 1154, Pump ran for 2 minutes and 6 seconds. Well ran dry. water was slightly murky during furge. Parameters were copied from the overpumping field sheet. Left site at 1202. Arrived on site at 0749. Garrin and Ryan S. present for sampling event. Depth to wate before samples were collected was 79,10, samples were collected at 0800. Left site at 0802.								

Do not touch this cell (SheetName)

101,1366 2,305

Date: 03/22/2010 Rev. 6

, '

ATTACHM WHITE MESA URA FIELD DATA WORKSHEET	ANIUM MILL See instruction							
Description of Sampling Event: 1st Quarter Ch								
Location (well name): TW4-7	and initials: <u>Garrin Palmer / 6P</u>							
Date and Time for Purging 2/22/2011 and	Sampling (if different) 2/23/2011							
Well Purging Equip Used: 🖾 pump of 🔲 bailer W	Vell Pump (if other than Bennet)							
Sampling Event Quarterly Chloroform Prev. V	Vell Sampled in Sampling Event TWH-10							
pH Buffer 7.0 7_{\bullet} O pH	Buffer 4.0							
Specific Conductance 999 µMHOS/ cm Well Depth(0.01ft): 120								
Depth to Water Before Purging 66.70 Casing Volume (V) 4" Well 34.79 (.653h) 3" Well 0 (.367h)								
Conductance (avg) [9]5 pH of V	Water (avg) 6.96							
Well Water Temp. (avg) [14.04] Redox Potentia	I (Eh) 272 Turbidity 69.4							
Weather Cond. Sunny	Ext'l Amb. Temp. °C (prior sampling event)							
Time Gal. Purged 7	Time Gal. Purged 34							
Conductance 2382 pH 6.95	Conductance 982 pH 6.94							
Temp. °C 3,92	Temp. °C 14.16							
Redox Potential Eh (mV) 272	Redox Potential Eh (mV) 269							
Turbidity (NTU)	Turbidity (NTU) 54.5							
Time 1419 Gal. Purged 51	Time Gal. Purged							
Conductance 1381 pH 7.01	Conductance pH							
Temp. °C [14, 21]	Temp. °C							
Redox Potential Eh (mV)	Redox Potential Eh (mV)							
Turbidity (NTU)	Turbidity (NTU)							

as 1964 à 1944 - Charles and the control of Charles and Charles and Charles and Charles and Parking Andrew Charles

Volume of Water Purged 60.01

gallon(s)

Time to evacuate two casing volumes (2V)

60.01

T = 2V/Q = U, DQ

Pumping Rate Calculation

Flow Rate (Q), in gpm. S/60 =

Number of casing volumes evacuated (if other than two)

If well evacuated to dryness, number of gallons evacuated

Name of Certified Analytical Laboratory if Other Than Energy Lab

Type of Sample	Sample	Sample Taken Sample Vol (indicate if other than as		Filtered		Preservative	Preservative Added	
	Y	N	specified below)	Y	N	Туре	Y	N
VOCs			3x40 ml		X	HCL	Ø	
Nutrients	X		100 ml		X	H2SO4	Ø	
Heavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 ml			No Preserv.		
Gross Alpha			1,000 ml			HNO3		
Other (specify)	Ø		Sample volume		Ø			Ø
Chloride If preservative is used, specify Type and Quantity of Preservative:								
Comment								
Arrived on site a began at 1416. P	-T 190 UMD 1	95. 60 721 F	or 3 minutes	and.	pres 53 s	ent tor pu econds. W	rge. (ell ra	n
began at 1416. Pump ran for 3 minutes and 53 seconds. Well ran dry. water was mostly clear throughout purge. Parameters were copied from the overpumping field sheet. Left site at 1431. Arrived on site at 0856. Garrin and Ryan S. present for sampling event. Depth to water before samples were collected was 67.57. Samples were collected at 0900. Left site at 0905.								
Do not touch this cell (SheetName)								

DENISON DATA MINES FIELD DATA WORKSHEET	ANIUM MILL JJ See instruction						
Description of Sampling Event: 1st Quarter Ch	loroform 2011						
Location (well name): TW4-8	and initials: Garrin Palmer/GP						
Date and Time for Purging 02/15/2011 and	Sampling (if different)						
Well Purging Equip Used: B pump or bailer V	Vell Pump (if other than Bennet)						
Sampling Event Quarterly Chloreform Prev.	Well Sampled in Sampling Event						
pH Buffer 7.0 7.0 pH	I Buffer 4.0 4.0						
Specific Conductance 999 µMHOS/ cm	Well Depth(0.01ft): 125						
Depth to Water Before Purging 66.34 Casing Volume (V) 4" Well: 38.24 (.653h) 3" Well: 0 (.367h)							
Conductance (avg) 3220 pH of	Water (avg) 6.97						
Well Water Temp. (avg) 14.28 Redox Potentia	l (Eh) 170 Turbidity 213.1						
Weather Cond. Sunny	Ext'l Amb. Temp. °C (prior sampling event)						
Time 1255 Gal. Purged 204	Time 1056 Gal. Purged 221						
Conductance 3227 pH 6.96	Conductance 3222 pH 6.98						
Temp. °C 14.31	Temp. °C 14.33.						
Redox Potential Eh (mV)	Redox Potential Eh (mV)						
Turbidity (NTU) 316.6	Turbidity (NTU) 228.3						
Time 1057 Gal. Purged 238	Time 1058 Gal. Purged 255						
Conductance 3213 pH 6.98	Conductance 3218 pH 6.99						
Temp. °C 14.29	Temp. °С <u>14,20</u>						
Redox Potential Eh (mV)	Redox Potential Eh (mV)						
Turbidity (NTU)	Turbidity (NTU)						

1

Date: 03/22/2010 Rev. 6

Volume of Water Purged	256	, 87	gallon(s)					
Pumping Rate Calculation								
Flow Rate (Q), in gpm. S/60 = 17 Time to evacuate two casing volumes (2V) T = 2V/Q = 4.50								
Number of casing volumes evacuated (if other than two)								
If well evacuated to dryness, number of gallons evacuated								
Name of Certified Analytical Laboratory if Other Than Energy Lab								
Type of Sample	Sample Y	e Taken	Sample Vol (indicate if other than as specified below)	Fili	ered	Preservative Type		vative ded N
VOCs	- <u>I</u>		3x40 ml			HCL	23	
Nutrients			100 ml			H2SO4		
Heavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 ml			No Preserv.		
Gross Alpha			1,000 ml			HNO3		
Other (specify)	. 1		Sample volume	<u> </u>			·, 🕶	
Other (specify)		Ċ	Sample volume		8			
Chloride If preservative is used, specify Type and Quantity of Preservative:								
See instruction								
Comment								
Comment Arrived on site at 1034. Garrin and Ryan S. on site for purge. Purge began at 1043. Pump ran for 15 minutes and 11 Seconds. Depth to water after purge was 103.60. Water was murky and a light green color. water cleared towards the end 0f the purge. Parameters were copied from the overpunping field sheet. Arrived on site at 1030. Garrin and Ryan S. Present for sampling event. Depth to water before samples were collected was 67.09 Samples were collected at 1040. Left site at 1045.								
Do not touch this cell (SheetName)								

White Mesa Mill Field Data Worksheet for Groundwater

		2
Mill - Groundwater Discharge Permit	<u>_</u>	· .
Groundwater Monitoring Quality Assura	ince	Plan

Froundwater Discharge Permit Gwater Monitoring Quality Assurance Plan (QAP)		Date: 03/22/2010 Rev. 6
OFNISON DAA	TACHMENT I ISA URANIUM MILL SHEET FOR GROUND WATER	Attachment I
Description of Sampling Event: 151 Quarte	r Chloröform 2011	
Location (well name) TW4-9	Sampler Name	GATTIN PALMER/ 6P
Date and Time for Purging 02/16/2011	and Sampling (if different)	02/17/201
Well Purging Equip Used: 2 pump or 2 bailer	Weil Pump (if other than Be	nnet) Grundfos
Sampling Event Quarterly chloroform	Prev. Well Sampled in Sampling	Event $\frac{7w4-8}{Fw4-8}$
pH Buffer 7.0 7.0	pH Buffer 4.0	2
Specific Conductance 999 µMHOS/ cm	Well Depth(0.01ft):	[20]
Depth to Water Before Purging 54, 43	Casing Volume (V) 4" Well 3" Well	<u>42.80</u> (.653h) <u>O</u> (.367h)
Conductance (avg) 2424	pH of Water (avg)	
Well Water Temp. (avg) 14.46 Redox	Potential (Eh) 245	Turbidity 432
Weather Cond. Sunny	Ext'l Amb Temp.	C (prior sampling event)
Time 1328 Gal. Purged 204] Time [1329]	Gal Purged 221
Conductance 2423 pH 6.64	Conductance 24	26 PH 6.64
Тетр. °С	Temp. °C	<u>ua</u>
Redox Potential Eh (mV)	Redox Potential Eh (m)	9 247
Turbidity (NTU)	Turbidity (NTU)	378
Time 1230 Gal Purged 139	Time 1231	Gal Purged 255

,

Weather Cond.	SUNNY		Ext'l Amb. Temp. *C (prior samp	ling event)
Time 132	Gal. Purged		Time 1329 Gal. Purgeo	221
Conductance	2423 pH 6.	64	Conductance 2426	6.6
Temp. °C	[Ц.ЦИ]		Тетр. °С	
Redox Potential I	Eh (mV) 251		Redox Potential Eh (mV) 247	
Turbidity (NTU)	641		Turbidity (NTU)	
Time 1330	Gal. Purged	38	Time 33 Gal Purged	1 255
Conductance	2423 PH 6	66	Conductance 2424 pt	I <u>6.6</u>
Temp. °C	<u>[14.49]</u>		Тетр. °С	
Redox Potential I	Eh (mV) [고내내]		Redox Potential Eh (mV)	
Turbidity (NTU)	363		Turbidity (NTU)	

rater

Date: 03/22/2010 Rev. 6

Groundwater Monitoring Quality Assurance Plan (QAP)								
Volume of Water Purged	257	. 21	gallon(s)					
Pumping Rate Calculation								
Flow Rate (Q), in gpm. S/60 = 17. T = 2V/Q = 5.03								
Number of casing volume	es evacuati	ed (if oth	er than two)					
If well evacuated to dryne	ess, numbe	r of galle	ons evacuated					
Name of Certified Analyt	ical Labor	atory if (Other Than Energy Lab	NIF	١			
Type of Sample Sample Taken Sample Vol (indicate if other than as Filtered Preservative Preservative								
	Y	N	specified below)	Y	N	- Туре	Y	N
VOCs			3x40 ml	· 🖸		HCL	ß	
Nutrients			100 ml		Ø	H2SO4	X	
Heavy Metals			250 ml	D		HNO3		
All Other Non Radiologics			250 ml			No Preserv.	· 🖸	
Gross Alpha			1,000 ml			HNO3		
Other (specify)			Sample volume					ស
Chloride Type and Quantity of Preservative:								
Comment Arrived on site at 1255. Garnin and Ryan S. present for purge. Purge Degan at 1316. Pump ran for 15 minutes and 13 seconds. Water was murky to start Purge and cleared throughout purge. Parameters were copied from the overpumping field sheet. Depth to water after purge was 87.75. Left Site at 1338.								
Site at 1338. Arrived on site at 0735. Garrin, Tanner, and Ryan S. present for sampling event. Depth to water before samples were collected was 54.56. samples were collected at 0740. Left site at 0744.								
Do not touch this cell (SheetName)								

White Mesa Mill Field Data Worksheet for Groundwater

DENISONDAL MINES AUX FIELD DATA WORKSHEET	ANIUM MILL See instruction						
Description of Sampling Event: 15t Quarter (chloroform 2011						
Location (well name): TW4-9R	and initials: Garrin Palmer / GP						
Date and Time for Purging 02/16/2011 and	Sampling (if different)						
Well Purging Equip Used: Dump or bailer W	/ell Pump (if other than Bennet)						
Sampling Event Averterly Chloroform Prev. V	Vell Sampled in Sampling Event TW4-8						
pH Buffer 7.0 7.0 pH	I Buffer 4.0 4.0						
Specific Conductance 944 µMHOS/ cm Well Depth(0.01ft): <i>N</i> /A							
Depth to Water Before Purging 1/A Casing	Volume (V) 4" Well: 3" Well: (.653h) (.653h) (.367h)						
Conductance (avg) [0.5] pH of V	Water (avg) 7.99						
Well Water Temp. (avg) 13.04 Redox Potentia	l (Eh) 249 Turbidity O						
Weather Cond. SUMMY	Ext'l Amb. Temp. °C (prior sampling event)						
Time 1153 Gal. Purged 150	Time Gal. Purged						
Conductance 10.5 pH 7.99	Conductance pH						
Temp. °C 13.04	Temp. °C						
Redox Potential Eh (mV)	Redox Potential Eh (mV)						
Turbidity (NTU)	Turbidity (NTU)						
Time Gal. Purged	Time Gal. Purged						
Conductance pH	Conductance pH						
Temp. °C	Temp. °C						
Redox Potential Eh (mV)	Redox Potential Eh (mV)						
Turbidity (NTU)	Turbidity (NTU)						

Date: 03/22/2010 Rev. 6

Volume of Water Purged 150 gallon(s) Pumping Rate Calculation Flow Rate (Q), in gpm. Time to evacuate two casing volumes (2V) S/60 = 17 T = 2V/Q = N/A Number of casing volumes evacuated (if other than two) M/A M/A If well evacuated to dryness, number of gallons evacuated N/A Name of Certified Analytical Laboratory if Other Than Energy Lab M/A Type of Sample Sample Taken Sample Vol (indicate if other than as specified below) Filtered Preservati Type VOCs 52 3x40 ml 53 HCL Nutrients H2SO4 Heavy Metals 0 0 250 ml 0 No Preserv. All Other Non Radiologics 0 0 1,000 ml 0 HNO3	ive Preservative Added Y N Z D						
Time to evacuate two casing volumes (2V)S/60 = 17 T = $2V/Q = N/A$ Number of casing volumes evacuated (if other than two) N/A If well evacuated to dryness, number of gallons evacuated N/A Name of Certified Analytical Laboratory if Other Than Energy Lab N/A Type of SampleSample TakenSample Vol (indicate if other than as specified below)YNspecified below)VOCsSample Taken $3x40$ mlNutrientsSample 100 mlSample 100 mlNutrientsSample 200 mlNo PreservationAll Other Non Radiologics100 ml100 mlI1,000 ml100 ml100 mlHNO31,000 ml100 ml100 ml	Added Y N Z D						
S/60 = T $T = 2V/Q = N/A$ Number of casing volumes evacuated (if other than two) N/A If well evacuated to dryness, number of gallons evacuated N/A Name of Certified Analytical Laboratory if Other Than Energy Lab N/A Type of Sample Sample Taken Sample Vol (indicate if other than as specified below) Filtered Preservati Type VOCs N 3x40 ml Sample HCL HCL Nutrients Image: Constrained to the theory in the text of text of the text of	Added Y N 29 D						
If well evacuated to dryness, number of gallons evacuated <i>N</i> / <i>A</i> Name of Certified Analytical Laboratory if Other Than Energy Lab <i>N</i> / <i>A</i> Type of Sample Sample Taken Sample Vol (indicate if other than as specified below) Filtered Preservati Type VOCs 20 3x40 ml E3 HCL Nutrients 20 100 ml E3 HO3 All Other Non Radiologics 1,000 ml No Preserv.	Added Y N 29 D						
Name of Certified Analytical Laboratory if Other Than Energy Lab Type of Sample Sample Taken Sample Vol (indicate if other than as specified below) Filtered Preservati Type VOCs Image: Sample Image: Sample Image: Sample Vol (indicate if other than as specified below) Image: Sample Image: Sample Vol (Indicate if other than as specified below) Image: Sample Image: Sample Vol (Indicate if other than as specified below) Image: Sample Image: Sample Vol (Indicate if other than as specified below) Image: Sample Image: Sample Vol (Indicate if other than as specified below) Image: Sample Image: Sample Image: Sample Vol (Indicate if other than as specified below) Image: Sample Image: Sample Image: Sample Vol (Indicate if other than as specified below) Image: Sample Image: Sample Image: Sample Vol (Indicate if other than as specified below) Image: Sample Image: Sample Image: Sample Vol (Indicate if other than as specified below) Image: Sample Image: Sample Image: Sample Vol (Image: Sample Image: Sample Imag	Added Y N 29 D						
Type of SampleSample TakenSample Vol (indicate if other than as specified below)FilteredPreservati TypeVOCsImage: Construct on the systemImage: Construct on the systemImage: Construct on the systemImage: Construct on the systemImage: Construct on the systemVOCsImage: Construct on the systemImage: Construct on the systemImage: Construct on the systemImage: Construct on the systemImage: Construct on the systemVOCsImage: Construct on the systemImage: Construct on the systemImage: Construct on the systemImage: Construct on the systemImage: Construct on the systemVOCsImage: Construct on the systemImage: Construct on the systemImage: Construct on the systemImage: Construct on the systemImage: Construct on the systemVOCsImage: Construct on the systemImage: Construct on the systemImage: Construct on the systemImage: Construct on the systemImage: Construct on the systemVOCsImage: Construct on the systemImage: Construct on the systemImage: Construct on the systemImage: Construct on the systemImage: Construct on the systemVOCsImage: Construct on the systemImage: Construct on the systemImage: Construct on the systemImage: Construct on the systemImage: Construct on the systemVOCsImage: Construct on the systemImage: Construct on the systemImage: Construct on the systemImage: Construct on the systemImage: Construct on the systemVICsImage: Construct on the systemImage: Construct on the systemImage: Construct on the system <td>Added Y N D D</td>	Added Y N D D						
Type of SampleSample Takenif other than as specified below)Preservan TypeVOCsImage: Sample Takenif other than as specified below)YNVOCsImage: Sample Taken3x40 mlImage: Sample Taken TypeImage: Sample Taken TypeVOCsImage: Sample TakenImage: Sample Taken specified below)YNVOCsImage: Sample Taken TypeImage: Sample Taken Specified below)YNVOCsImage: Sample Taken TypeImage: Sample Taken Specified below)Image: Sample Taken TypeImage: Sample Taken TypeNutrientsImage: Sample Taken Image: Sample Taken TypeImage: Sample Taken TypeImage: Sample Taken TypeImage: Sample Taken TypeNutrientsImage: Sample Taken Image: Sample Taken TypeImage: Sample Taken TypeImage: Sample Taken TypeImage: Sample Taken TypeNutrientsImage: Sample Taken TypeImage: Sample Taken TypeImage: Sample Taken TypeImage: Sample Taken TypeHeavy MetalsImage: Sample Taken TypeImage: Sample Taken TypeImage: Sample Taken TypeImage: Sample Taken TypeAll Other Non RadiologicsImage: Sample Taken 	Added Y N 29 D						
VOCsImage: Constraint of the systemImage: Constraint	23 🖵						
NutrientsImage: Second stateImage: Second state <td></td>							
Heavy Metals Image: Construction of the second	114						
All Other Non RadiologicsIINo Preserv.Gross AlphaIIIIHNO3							
Gross Alpha							
Other (specify)							
Chloride If preservative is used, specify Type and Quantity of Preservative;							
Comment							
Arrived on site at 1140. Garrin and Ryan S. present for rinsate.							
Rinsate began at 1144. Pumped 50 Gallons of Acid water	r, 50 Gallons						
of soap water, and 50 Gallons of D.I. water. Parameters u	vere taken						
and samples were collected at 1153. Left site at 1200	1						
and samples were uncontracted in the provident of							
Do not touch this cell (SheetName)							

White Mesa Mill Field Data Worksheet for Groundwater

DENISONDAA MINES HELD DATA WORKSHEET	RANIUM MILL See instruction
Description of Sampling Event: 1st Quarter Ch	
Location (well name): Twy-10	and initials: Garris Palmer / GP
Date and Time for Purging 2/22/2011 an	d Sampling (if different) 2/23/2011
Well Purging Equip Used: 📴 pump or 🗖 bailer	Well Pump (if other than Bennet) Grundfos
Sampling Event Quarterly Chloroford Prev.	Well Sampled in Sampling Event $TW4-11$
pH Buffer 7.0 7.0 p	H Buffer 4.0
Specific Conductance 999 µMHOS/ cm	Well Depth(0.01ft):
Depth to Water Before Purging 56.59 Casin	g Volume (V) 4" Well: 36, 32 (.653h) 3" Well: 0 (.367h)
Conductance (avg) 2194 pH of	Water (avg) 6.32
Well Water Temp. (avg) 14.47 Redox Potenti	al (Eh) 380 Turbidity 43.8
Weather Cond. Sunny	Ext'l Amb. Temp. °C (prior sampling event)
Time [332] Gal. Purged 34	Time Gal. Purged
Conductance 2194 pH 6.32	Conductance pH
Тетр. °С [14.47]	Temp. °C
Redox Potential Eh (mV) 380	Redox Potential Eh (mV)
Turbidity (NTU) 43.8	Turbidity (NTU)
Time Gal. Purged	Time Gal. Purged
Conductance pH	Conductance pH
Temp. °C	Temp. °C
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)

Date: 03/22/2010 Rev. 6

Volume of Water Purged

gallon(s)

Time to evacuate two casing volumes (2V)

10

40.8

T = 2V/Q = 4.33

Pumping Rate Calculation

Flow Rate (Q), in gpm. $S/60 = \boxed{7}$

Number of casing volumes evacuated (if other than two)

40.8

If well evacuated to dryness, number of gallons evacuated

Name of Certified Analytical Laboratory if Other Than Energy Lab

Type of Sample	Sample	e Taken	Sample Vol (indicate if other than as	Filt	ered	Preservative	Preser Ad	vative ded
	Y	N	specified below)	Y	N	Туре	Y	N
VOCs	X		3x40 ml		M	HCL	Ø	
Nutrients	R		100 ml		×	H2SO4	ß	
Heavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 ml			No Preserv.		
Gross Alpha			1,000 ml			HNO3		
Other (specify)	Ø		Sample volume	, D	ţ X			Ø
Chloride If preservative is used, specify Type and Quantity of Preservative:								
Comment Comment								
Arrived on site o	Arrived on site at 1319, Garrin and Ryan S. present for purge. Purge began at 1330. Pump ran for 2 minutes and 40 seconds. Well ran							vrge
began at 1330.	Pump	ran	for 2 minute	s and	40	seconas, w		
alouge interest was clear throughout ourse. Lett site at 133 in rarameter								
were copied from the overpumping field sheet. Arrived on site at 0834. Garrin and Ryan s. present for sumpling event. Depth to water before samples were collected was 56.82								
Samples were col	sected	<u>lat</u>	0340. LEFT 5	ite a	+ 034	15.		
Do not touch this cell (SheetName)								

Date: 03/22/2010 Rev. 6

Date: 03/22/2010 Rev. 6

ATTACHM	ENT 1 Attachment 1							
DENISON DAL WHITE MESA UR MINES FIELD DATA WORKSHEET	· · · ·							
Description of Sampling Event: 1st Quarter Culoroform 2011								
Location (well name): TWH-11	and initials: Garrin Palmer 168							
Date and Time for Purging 2/22/2011 and	Sampling (if different) 2/23/2011							
Well Purging Equip Used: B pump or bailer W	/ell Pump (if other than Bennet)							
Sampling Event Quarterly chloroform Prev. V	Well Sampled in Sampling Event TW4-6							
pH Buffer 7.0 7.0 pH	HBuffer 4.0 4.0							
Specific Conductance 999 µMHOS/ cm	Well Depth(0.01ft): 100							
Depth to Water Before Purging 58.74 Casing	Volume (V) 4" Well: 26,93 (.653h) 3" Well: 0 (.367h)							
Conductance (avg) 1573 pH of	Water (avg) 6.92							
Well Water Temp. (avg) [3.94] Redox Potentia	l (Eh) 333 Turbidity 23.5							
Weather Cond. Sunny	Ext'l Amb. Temp. *C (prior sampling event)							
Time 1243 Gal. Purged 34	Time 1244 Gal. Purged 51							
Conductance 1619 pH 6, 46	Conductance 1528 pH 6.84							
Temp. °C 3.94	Temp. °C 13.95							
Redox Potential Eh (mV) 329	Redox Potential Eh (mV) 337							
Turbidity (NTU)	Turbidity (NTU) 32:2							
Time Gal. Purged	Time Gal. Purged							
Conductance pH	Conductance pH							
Temp. °C	Temp. °C							
Redox Potential Eh (mV)	Redox Potential Eh (mV)							
Turbidity (NTU)	Turbidity (NTU)							

Volume of Water Purged 58,82

gallon(s)

Time to evacuate two casing volumes (2V)

58.82

T = 2V/Q = 3.16

Pumping Rate Calculation

Flow Rate (Q), in gpm. S/60 = 17

Number of casing volumes evacuated (if other than two)

If well evacuated to dryness, number of gallons evacuated

Name of Certified Analytical Laboratory if Other Than Energy Lab

Type of Sample	Sample	Sample Taken Sample Vol (indicate if other than as		Filt	ered	Preservative	Preservative Added	
	Y	N	specified below)	Y	N	Туре	Y	N
VOCs	X		3x40 ml		N	HCL	ß	
Nutrients	X		100 ml		X	H2SO4	Ø	
Heavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 ml			No Preserv.		
Gross Alpha			1,000 ml			HNO3		
Other (specify)	R		Sample volume		Ø			X
<u>Chloride</u> If preservative is used, specify Type and Quantity of Preservative:								
Comment								
Arrived on site at 1231, Garrin and Ryan S. present for purae. Purac								
here at 1241, water was clear throughout ourse, well ran dry.								
began at 1241. Water was clear throughout purge. Well ran dry. Pump ran For 3 minutes and 46 Seconds. Parameters were copied								
sumption to stand the stand the stand the stand the stand								
From the overpumping field sheet. Left site at 1250,								
Arrived on site at 0819. Depth to water before samples were collected was 58.55. Samples were collected at 0825. Left site at 0829.								
Was 28.55. Samp	es ve	re co	nected at Us	49. L	.277	site at vo	J 13	
			· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	<u></u>	
		ot touch	this cell (SheetName)					
Do not touch this cell (SheetName)								

- - <u>-</u>

Date: 03/22/2010 Rev. 6

DENISONDAL MINES FIELD DATA WORKSHEET	ANIUM MILL , 🤣 See instruction
Description of Sampling Event: 1st Quarter Chief	
Location (well name): Twy-12	and initials: Garcin Patmer 1 GP
Date and Time for Purging 02/14/2011 and	Sampling (if different)
Well Purging Equip Used: 🖾 pump of 🔲 bailer W	Vell Pump (if other than Bennet)
Sampling Event Quarterly chloroform Prev. V	Vell Sampled in Sampling Event ۲۳۳-3
pH Buffer 7.0 7.0 pH	I Buffer 4.0 4.0
Specific Conductance 994 µMHOS/ cm	Well Depth(0.01ft):
Depth to Water Before Purging 39.28 Casing	Volume (V) 4" Well: $U_{0.61}$ (.653h) 3" Well: M/A (.367h)
Conductance (avg) 900 pH of V	Water (avg) 7,16
Well Water Temp. (avg) [14,56] Redox Potentia	I (Eh) 231 Turbidity 1315
Weather Cond. Sunny	Ext'l Amb. Temp. °C (prior sampling event) 20C
Time 1241 Gal. Purged 187	Time 1242 Gal. Purged 204
Conductance 901 pH 7-19	Conductance 901 pH 7.17
Temp. °C 14.59	Temp. °C 14.52
Redox Potential Eh (mV) 233	Redox Potential Eh (mV) 232
Turbidity (NTU)	Turbidity (NTU)
Time 1243 Gal. Purged 221	Time 1244 Gal. Purged 238
Conductance 401 pH 7.15	Conductance 899 pH 7.14
Temp. °C [14.56]	Temp. °C 14.57
Redox Potential Eh (mV) 230	Redox Potential Eh (mV) 229
Turbidity (NTU)	Turbidity (NTU)

.

CIDENGABLES MICHING CUBILLY ASSULATE	e rian (QAr)							
Volume of Water Purged	240	. 38	gallon(s)					
Pumping Rate Calculation	1							
Flow Rate (Q), in gpm.			Time to evac	uate two	casing v	olumes (2V)		
S/60 = 17]		T = 2V/Q =	and the second se]4.77		
Number of casing volume	s evacuate	ed (if oth	er than two)					
If well evacuated to dryne	ss. numbe	r of gall	ons evacuated	NII				
		_		/////	·			
Name of Certified Analyti	cal Labor	atory if (Other Than Energy Lab	NIA				
Type of Sample	Sample Taken		Sample Vol (indicate	Filtered		Preservative	Preservative	
	Y		if other than as			Туре		ded
VOCs	Y 53	N D	specified below) 3x40 ml	Y	N Service	HCL	Y	N
Nutrients			100 ml			H2SO4		
Heavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 ml			No Preserv.		
Gross Alpha			1,000 ml			HNO3		
Other (specify)	Ø	Ū	Sample volume				D	Ø
Chloride	If preservative is used, specify Type and Quantity of Preservative:							
Comment					<u></u> .	See	instructio	on
Arrived on site at event. Purge began Depth to water	. at 12 after	230. fi purae	ump ran for 11 2 was 82.90. 1	t mini Nater	utes was	and T4 Sco s. clear thro	ionds, oughou	4
Purge. Parameters at 1251. Arrived on site at event. Death to wa	1322	. Garn	in, tanker and	Ryan	5. a	u on site fo	- San	noting
event. Depth to wa			this cell (SheetName)			-T 1 <i>345, L</i> LFt	<u>at </u>	330.

White Mesa Mill Field Data Worksheet for Groundwater .

Date: 03/22/2010 Rev. 6

ATTACHM ATTACHM							
DENISON DAA WHITE MESA URANIUM MILL Sec instruction							
Description of Sampling Event: 1st Quarter Chloroform 2011							
Location (well name): Twy-L3	and initials: Garria Palmer 16P						
Date and Time for Purging 02/14/2011 and	Sampling (if different) 02/15/201						
Well Purging Equip Used: Depump or Depuised bailer W	Vell Pump (if other than Bennet)						
Sampling Event Rugeterly Chloroform Prev. V	Vell Sampled in Sampling Event Tw4-12						
pH Buffer 7.0 7.0 pH Buffer 4.0 4.0							
Specific Conductance 999 µMHOS/ cm Well Depth(0.01ft): 102.5							
Depth to Water Before Purging <u>U6.66</u> Casing Volume (V) 4" Well: <u>36.45</u> (.653h) 3" Well: (.367h)							
Conductance (avg) 1324 pH of Water (avg) 7.08							
Well Water Temp. (avg) 14.56 Redox Potential (Eh) 257 Turbidity 11.0							
Weather Cond. Sunny	Ext'l Amb. Temp. *C (prior sampling event) 390						
Time 1333 Gal. Purged 34	Time Gal. Purged						
Conductance (324 pH 7.08	Conductance pH						
Temp. °C [14.56]	Temp. °C						
Redox Potential Eh (mV) 257	Redox Potential Eh (mV)						
Turbidity (NTU)	Turbidity (NTU)						
Time Gal. Purged	Time Gal. Purged						
Conductance pH	Conductance pH						
Temp. °C	Temp. °C						
Redox Potential Eh (mV)	Redox Potential Eh (mV)						
Turbidity (NTU)	Turbidity (NTU)						

Volume of Water Purged 39.44

gallon(s)

T = 2V/Q =

Time to evacuate two casing volumes (2V)

Tim and

44

4.28

O Ø

39

Beer

Pumping Rate Calculation

Flow Rate (Q), in gpm. S/60 = 17

Number of casing volumes evacuated (if other than two)

If well evacuated to dryness, number of gallons evacuated

Name of Certified Analytical Laboratory if Other Than Energy Lab

Type of Sample	Sample Taken		Sample Vol (indicate if other than as	Filtered		Preservative	Preservative Added	
	Y	N	specified below)			Туре	Y	N
VOCs	158		3x40 ml		63	HCL	8	
Nutrients	X		100 ml		53	H2SO4	×	
Heavy Metals	Ō		250 ml			HNO3		
All Other Non Radiologics	. 🛛		250 ml			No Preserv.	. 🛛	
Gross Alpha			1,000 ml			HNO3	Π,	
Other (specify)	Ø		Sample volume	D				⊠
Chloride					·	If preservative is us Type and Quantity of Preservative:		y
Comment						·#2'	instructio	
Arnued on site at event. Purge bega Well ran dry. Pa	same	ters	were copied f	rom t	he o	verpumping	tield	pling ids.
Sheet. Water was Arrived on site at event. Depth to u Left site at 134	s clea - 1331 Vater	r tha . Gare	oughout furg	se. Les Ryar	ft si rs. a	te at 134 In present	lu. for so	impling b.
	Do r	ot touch	this cell (SheetName)					

ATTACHM WHITE MESA UR FIELD DATA WORKSHEET	ANIUM MILL See instruction
Description of Sampling Event: 157 Quarter Ch	loroform 2011
Location (well name). TW4-14	and initials: Garrin Palmer/GP
Date and Time for Purging 2-14-2011 and	Sampling (if different)
Well Purging Equip Used: Dump or D bailer	Vell Pump (if other than Bennet) Grund fos
Sampling Event Quarterly Chloroform Prev.	Well Sampled in Sampling Event 7.34-13
pH Buffer 7.0 7.0 pl	H Buffer 4.0 4.0
Specific Conductance 999 µMHOS/ cm	Well Depth(0.01ft): <u>93.00</u>
Depth to Water Before Purging 88.01 Casing	Volume (V) 4" Well: 3.25 (.653h) 3" Well: 0 (.367h)
Conductance (avg) 2997 pH of	Water (avg) 7.99
Well Water Temp. (avg) [14.97 Redox Potentia	al (Eh) 150 Turbidity 785
Weather Cond. Sunny	Ext'l Amb. Temp. °C (prior sampling event) 식 °c
Time 1432 Gal. Purged 2	Time Gal. Purged
Conductance 2497 pH 7.99	Conductance pH
Temp. °С <u>14.97</u>	Temp. °C
Redox Potential Eh (mV) 150	Redox Potential Eh (mV)
Turbidity (NTU) 785.0	Turbidity (NTU)
Time Gal. Purged	Time Gal. Purged
Conductance pH	Conductance pH
Temp. °C	Temp. °C
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)

Volume of Water Purged	2.55] gallon(s)					
Pumping Rate Calculation								
Flow Rate (Q), in gpm.Time to evacuate two casing volumes (2V) $S/60 =$ 17 $T = 2V/Q =$.38								
Number of casing volumes evacuated (if other than two) -78								
If well evacuated to dryness, number of gallons evacuated								
Name of Certified Analytic	cal Labor	atory if (Other Than Energy Lab	MA				
Typc of Sample	Sample Taken		Sample Vol (indicate if other than as	Filt	ered	Preservative Type	Preservative Added	
	Y	N	specified below)	Y	N		Y	N
VOCs	×		3x40 ml		- 🖸	HCL	Ø	
Nutrients			100 ml		<u></u>	H2SO4		
Heavy Metals			250 ml			. HNO3		
All Other Non Radiologics Gross Alpha			250 ml			No Preserv.		
Other (specify)			1,000 ml			HNO3		
Other (specify)	<u>ٰ</u> کا		Sample volume	. D .				62
Chloride If preservative is used, specify Type and Quantity of Preservative:								
Comment								
Arrived on site at 1420. Garrin Palmer and Ryan S present to purge well Purge began at 1432. Purged Well for a total of 9 seconds. Well Randry. Water was mostly clear throughout purge. Purge ended at 1432. Left site at 1443. Parameters were taken from overpumping field sheet. Arrived on site at . Tunner, Garrin, and Ryan are present to collect samples. Depth To water before samples were collected was \$7.49. Samples bailed at 1346. Left site at 1352.								
Do not touch this cell (SheetName)								

White Mesa Mill Field Data Worksheet for Groundwater .

,

1

1 טופע ב זוק - מויאק אפיר וויזקטונט / מו-לית ועיפ ביבטעובוב יסרין - בווונים בעבורט אוויא אויאר אויין א

DENISONDIA MINES FIELD DATA WORKSHEET	ANIUM MILL
Description of Sampling Event: 1st Quarter C	hloroform 2011
Location (well name): TWH-15	and initials: Garrin Palmer / 13P
Date and Time for Purging 2/23/2011 and	Sampling (if different)
Well Purging Equip Used: Dr pump of D bailer	Well Pump (if other than Bennet)
Sampling Event Quarterly chloroform Prev.	Well Sampled in Sampling Event Mu-4
pH Buffer 7.0 7.0 pl	H Buffer 4.0 4.0
Specific Conductance 999	Well Depth(0.01ft): 122.5
Depth to Water Before Purging 75,68 Casing	g Volume (V) 4" Well: 3" Well: (.653h) (.367h)
Conductance (avg) 3379 pH of	Water (avg) 6,71
Well Water Temp. (avg) 14.84 Redox Potentia	al (Eh) 292 Turbidity O
Weather Cond. Sunny	Ext'l Amb. Temp. *C (prior sampling event)
Time 1329 Gal. Purged	Time Gal. Purged
Conductance 3:374 pH 6, 71	Conductance pH
Temp. °C .14.84	Temp. °C
Redox Potential Eh (mV) 292	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)
Time Gal. Purged	Time Gal. Purged
Conductance pH	Conductance pH
Temp. °C	Temp. °C
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)

Volume of Water Purged

gallon(s)

T = 2V/Q =

Time to evacuate two casing volumes (2V)

0

Pumping Rate Calculation

Flow Rate (Q), in gpm. S/60 =

Number of casing volumes evacuated (if other than two)

If well evacuated to dryness, number of gallons evacuated

Name of Certified Analytical Laboratory if Other Than Energy Lab

Type of Sample	Sample	e Taken	Sample Vol (indicate if other than as	Filte	ered	Preservative	Preser Ade	
	Y	N	specified below)	Y	N	Туре	Y	N
/OCs			3x40 ml		۲.	HCL	Z	
Nutrients	X		100 ml			H2SO4	X	
Icavy Metals			250 ml		Ω,	HNO3		
Il Other Non Radiologics			250 ml			No Preserv.		
Gross Alpha			1,000 ml			HNO3		. 🗖
Other (specify)			Sample volume		Ø			Þ
Chloride	-					If preservative is us Type and Quantity Preservative:		,
omment							instructio	
Arrived on site a event. Samples	2+ 13;	20.6	arrin and Ry	yan S	Pre.	sent for s	Sampl	ing
	were	- Coll.	ected at 13	30. U)ater	was cle	5 02 m	
event. Samples								
event. Samples Left site at		· .	· · · · ·	, I				

ou Juba

DENISONDIA MINES FIELD DATA WORKSHEET	ANIUM MILL See instruction
Description of Sampling Event: 15+ Guarter Ch	
Location (well name): TWY-16	and initials: <u>Garrin Palmer/BP</u>
Date and Time for Purging 2/21/2011 and	Sampling (if different) $\frac{2/22/2011}{2}$
Well Purging Equip Used: 🔂 pump or 🔲 bailer W	Vell Pump (if other than Bennet)
Sampling Event Quarterly Chiosoform Prev. V	Vell Sampled in Sampling Event TWH-19
pH Buffer 7.0 7.0 pH	I Buffer 4.0 너. O
Specific Conductance 949 µMHOS/ cm	Well Depth(0.01ft): 142
Depth to Water Before Purging 64.59 Casing	Volume (V) 4" Well: 50.53 (.653h) 3" Well: (.367h)
Conductance (avg) 3695 pH of V	Water (avg) 6.60
Well Water Temp. (avg) 12.39 Redox Potentia	l (Eh) 378 Turbidity 88.6
Weather Cond. Partly Lloudy	Ext'l Amb. Temp. °C (prior sampling event)
Time 0845 Gal. Purged 34	Time 0846 Gal. Purged 51
Conductance 3975 pH 6.60	Conductance 3660 pH 6.58
Temp. °C [12.17]	Temp. °C 12.19
Redox Potential Eh (mV)	Redox Potential Eh (mV) 385
Turbidity (NTU) 32.3	Turbidity (NTU)
Time O348 Gal. Purged 35	Time Gal. Purged
Conductance 3550 pH 6,63	Conductance pH
Temp. °C 12.85	Temp. °C
Redox Potential Eh (mV) 350	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)

Date: 03/22/2010 Rev. 6

Volume of Water Purged	92.1	L	gallon(s)					
Pumping Rate Calculation								
Flow Rate (Q), in gpm. S/60 = 17 Time to evacuate two casing volumes (2V) T = 2V/Q = 5.94								
Number of casing volumes evacuated (if other than two)								
If well evacuated to dryness, number of gallons evacuated								
Name of Certified Analytical Laboratory if Other Than Energy Lab								
Type of Sample	Sample Y	e Taken N	Sample Vol (indicate if other than as specified below)	Filt Y	ered N	Preservative Type		vative ded N
VOCs	I I I I I I		3x40 ml			HCL	I I	
Nutrients	x X				and the second s	and the second se	N	
			100 ml		8	H2SO4		
Heavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 ml			No Preserv.		
Gross Alpha			1,000 ml			HNO3		
Other (specify)	Ø		Sample volume		۶ ۵			S
Chloride If preservative is used, specify Type and Quantity of Preservative:								
Comment See instruction								
Arrived on site at 0824. Garrin and Ryan S. Present for Purge. Purge began at 0843. Pump ran Par 5 minutes and 42 seconds. Well ran dry. Water started out clear and turned light brown towards the end of the purge. Parameters were copied from the overpumping field sneet. Left site at 0400. Arrived on site at 0738. Garrin and Ryan S. present for sampling. Depth to water before samples were collected was 64.65 Samples were collected at								
Do not touch this cell (SheetName)								

White Mesa Mill Field Data Worksheet for Groundwater

DENISONDA MINES ATTACHM WHITE MESA UR FIELD DATA WORKSHEET	ANIUM MILL See instruction					
Description of Sampling Event: 1st Quarter chl						
Location (well name): TWH-16R	and initials: Garrin Palmer / GP					
Date and Time for Purging 2/21/2011 and	Sampling (if different)					
Well Purging Equip Used: Dump or D bailer V	Vell Pump (if other than Bennet)					
Sampling Event Quarterly Chloroform Prev. V	Well Sampled in Sampling Event Twi-19					
pH Buffer 7.0 7.0 pH	H Buffer 4.0					
Specific Conductance 999 µMHOS/ cm Well Depth(0.01ft): N/A						
Depth to Water Before Purging \mathcal{M}/\mathcal{A} Casing Volume (V) 4" Well: \mathcal{O} (.653h) 3" Well: \mathcal{O} (.657h)						
Conductance (avg) 19.5 pH of	Water (avg) $H_{*} Bq$					
Well Water Temp. (avg) 5,24 Redox Potentia	l (Eh) H80 Turbidity O					
Weather Cond. Partly Cloudy	Ext'l Amb. Temp. °C (prior sampling event) -) ° Č					
Time 0759 Gal. Purged 150	Time Gal. Purged					
Conductance 19.5 pH 4.99	Conductance pH					
Temp. °С <u>5.2ч</u>	Temp. °C					
Redox Potential Eh (mV)	Redox Potential Eh (mV)					
Turbidity (NTU)	Turbidity (NTU)					
Time Gal. Purged	Time Gal. Purged					
Conductance pH	Conductance pH					
Temp. °C	Temp. °C					
Redox Potential Eh (mV)	Redox Potential Eh (mV)					
Turbidity (NTU)	Turbidity (NTU)					

Mill - Groundwater Discharge Permit

Date: 03/22/2010 Rev. 6

Groundwater Monitoring Quality Assurance	e Plan (QAP)	1						
Volume of Water Purged 150 gallon(s)								
Pumping Rate Calculation								
Flow Rate (Q), in gpm. S/60 = 7]		Time to evac T = 2V/Q =			rolumes (2V)		
Number of casing volume	s evacuat	ed (if oth	er than two)					
If well evacuated to dryne	ss, numb i	er of gall	ons evacuated	NU	4			
Name of Certified Analyti	cal Labor	atory if (Other Than Energy Lab	NI	4			
Type of Sample		e Taken	Sample Vol (indicate if other than as	Filt	ered	Preservative - Type	Preser Ade	
	Y	N	specified below)	Y	N		Y	N
VOCs	_ ⊠		3x40 ml			HCL	×	
Nutrients	X		100 ml		Ø	H2SO4	- 🔀	
Heavy Metals			250 ml			HNO3		
All Other Non Radiologics		·□	250 ml			No Preserv.		
Gross Alpha			1,000 ml		· 🖸	HNO3		
Other (specify)	5		Sample volume	. · D `	Ø		Ċ	X
Chloride. If preservative is used, specify Type and Quantity of Preservative:								
Comment Arrived on site at 0740. Garrin and Ryan S. present for rinsate, Rinsate								
Arrived on site at began at 0750. f and 50 ballons of 1 at 0805.	ma cert	L 30	Gallens of Acid	wat	er, 50) Gallons of	Sour	water
	Do n	ot touch	this cell (SheetName)					

1

اير

DENISONDAA ATTACHN WHITE MESA UR	LANIUM MILL See instruction
Description of Sampling Event: [ST Quarter Gi	and the second
Location (well name): Tŵ4-17	Sampler Name and initials: Tunner Holliday/TH
Date and Time for Purging 2/23/2611 and	Sampling (if different)
Well Purging Equip Used: 🖾 pump or 🗂 bailer	Well Pump (if other than Bennet)
Sampling Event Quarterly Chloroform Prev.	Well Sampled in Sampling Event
pH Buffer 7.0 7.0 p	H Buffer 4.0
Specific Conductance 999 µMHOS/ cm	Well Depth(0.01ft):
Depth to Water Before Purging 76.01 Casing	y Volume (V) 4" Well: 36.38 (.653h) 3" Well: 6 (.367h)
Conductance (avg) 4057 pH of	Water (avg) 6.17
Well Water Temp. (avg) [14,11] Redox Potenti	al (Eh) 104 Turbidity 5.7
Weather Cond.	Ext'l Amb. Temp. °C (prior sampling event)
Time 335 Gal. Purged 77.03	Time 1336 Gal. Purged 7725
Conductance 4059 pH 6.17	Conductance 4056 pH 6.17
Temp. °C [14.11	Тетр. °С
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU) 5.7	Turbidity (NTU)
Time 1337 Gal, Purged 77 44	Time 1338 Gal. Purged 77.68
Conductance 4057 pH 6.17	Conductance 4057 pH 6.17
Temp. °C	Temp. °C 14.10
Redox Potential Eh (mV)	Redox Potential Eh (mV) 103
Turbidity (NTU) 57	Turbidity (NTU) 5.7

ì

Date: 03/22/2010 Rev. 6

Groundwater Monitoring Quality Assurance	e Plan (QAP)							
Volume of Water Purged	Volume of Water Purged 78.12. gallon(s)							
Pumping Rate Calculation								
Flow Rate (Q), in gpm. Time to evacuate two casing volumes (2V)								
S/60 = 217 T = 2V/Q - 339.9x								
Number of casing volumes	s evacuate	ed (if oth]	-		
If well evacuated to drynes	ss, numbe	r of galle	ons evacuated					
Name of Certified Analytic	cal Labor	atory if (Other Than Energy Lab	Mits.				
Type of Sample	Type of Sample Sample Taken Sample Vol (indicate if other than as		Filt	ered	Preservative		vative ded	
	Y	N	specified below)	Y	N	Туре	Y	N
VOCs	53		3x40 ml		8	HCL	23	
Nutrients	53	Ū	100 ml .		<u>کا</u>	H2SO4	X	
Heavy Metals	Q		250 ml			HNO3	<u> </u>	
All Other Non Radiologics		<u>د</u> []	250 ml			No Preserv.		
Gross Alpha	Û		1,000 ml			HINO3		
Other (specify)			Sample volume		53			62)
Chloride If preservative is used, specify Type and Quantity of Preservative:								
	•							
Comment						See i	instructio	n
Arrived on site at 0730. Tanner Holliday present to purge and sample N TW4-17. Purge began at 0740. Purged Well for a total of 360 Minutes Water had very little coloration. Purge ended and samples were collected at 1340. Left site at 1348. Depth To Water was 82.81								
Do not touch this cell (SheetName)								

White Mesa Mill Field Data Worksheet for Groundwater

 Mill - Groundwater Discharge Permit Groundwater Monitoring Quality Assurance Plan (QAP)

DENISONDAL MINES FIELD DATA WORKSHEET	ANIUM MILL See instruction
Description of Sampling Event:	Ist Quarter chloroform 2011
Location (well name): TWH-18	and initials: Garrin Palmer / 6P
Date and Time for Purging 2/21/2011 and	Sampling (if different) 2/22/2011
Well Purging Equip Used: 🔀 pump of 🗖 bailer W	Vell Pump (if other than Bennet)
Sampling Event Quarterly chloroform Prev. V	Well Sampled in Sampling Event $Tw-5$
pH Buffer 7.0 7.0 pH	H Buffer 4.0 4.0
Specific Conductance 999 µMHOS/ cm	Well Depth(0.01ft): 137.5
Depth to Water Before Purging 57.19 Casing	Volume (V) 4" Weil: 52,43 (653h) 3" Well: 0 (.367h)
Conductance (avg) 1351 pH of	Water (avg) 6.44
Well Water Temp. (avg) 14.21 Redox Potentia	l (Eh) 310 Turbidity 15,92
Weather Cond. Cloudy	Ext'l Amb. Temp. °C (prior sampling event)
Time 1203 Gal. Purged 204	Time 1204 Gal. Purged 221
Conductance 1377 pH 6.45	Conductance 1356 pH 6.44
Temp. °C 14.74	Temp. °C [14.93]
Redox Potential Eh (mV)	Redox Potential Eh (mV) 31
Turbidity (NTU) 23.2	Turbidity (NTU) 13.2
Time 1205 Gal. Purged 238	Time 1206 Gal. Purged 255
Conductance 1341 pH 6.45	Conductance [33] pH 6.44
Temp. °С <u>14.85</u>	Temp. °C 14.\$3
Redox Potential Eh (mV) 309	Redox Potential Eh (mV) 307
Turbidity (NTU)	Turbidity (NTU)

10

01-00 prot 13302616 / 04-040 prot.5-7mplets-{319} - Frinces 12/6/2019 11.32 M from DUCDD

891 218912 188

Volume of Water Purged

gallon(s)

Time to evacuate two casing volumes (2V)

NIA

T = 2V/Q = 6.16

Pumping Rate Calculation

Flow Ra	te (Q), in gpm.
S/60 =	_ 17

Number of casing volumes evacuated (if other than two)

261.12

If well evacuated to dryness, number of gallons evacuated

Name of Certified Analytical Laboratory if Other Than Energy Lab

Type of Sample	Sample	e Taken	Sample Vol (indicate if other than as	Filtered		Preservative	1	Preservative Added	
	Y	N	specified below)	Y	N	Туре	Y	N	
VOCs	12	Ö	3x40 ml		123	HCL			
Nutrients	F		100 ml		×	H2SO4			
Heavy Metals			250 ml			HNO3			
All Other Non Radiologics			250 ml			No Preserv.			
Gross Alpha			1,000 ml			HNO3			
Other (specify)	Ę		Sample volume		Ø			図	
Chloride If preservative is used, specify Type and Quantity of Preservative:									
Comment						See See	instructio	'n	
Arrived on site at 1151, fump ran for	1140.0	barrin	and Ryan S. on	- site	for p	urge. furge	began	at	
1151, Pump ran for	15 Min	nutes	and 36 secon	ds. Pe	pth 1	to water a	ffer 1	ourge	
was 58.14, Water	was M	nostly	clear through	out p	urge.	farameters	wer	e	
cooled from the	overf	UMPI	ng field shee	T, LCI	rt 5(+	c at 1213.			
Arrived on site at Depth to water be	0932.	Garrin	and Ryan S.	prese	int f	or sampling	even	+.	
Death to water be	fore so	mple	s were collecte	d we	rs 57	. 21, Sample	s we	re	
Connected at 0840	Lef	t site	e at 0844.			•			
		not touch	this cell (SheetName)						
			ants cen (oncen ante)						

OENISONDAA MINES FIELD DATA WORKSHEET	ANIUM MILL . 🖉 See instruction
Description of Sampling Event: 1st Quarter Ch	wroform
Location (well name): Tw 4-19	Sampler Name and initials: Garrin Palmer/GP
Date and Time for Purging 2/17/2011 and	Sampling (if different)
Well Purging Equip Used: Dump or D bailer W	Vell Pump (if other than Bennet)
Sampling Event Quarterly chloreform Prev. V	Well Sampled in Sampling Event TW4-24
pH Buffer 7.0 PH	Buffer 4.0 <u>4.0</u>
Specific Conductance 9999 µMHOS/ cm	Well Depth(0.01ft): 125
Depth to Water Before Purging 71.02 Casing	Volume (V) 4" Well: 3" Well: (.653h) (.367h)
Conductance (avg) 3135 pH of	Water (avg) 6.71
Well Water Temp. (avg) 15:24 Redox Potentia	l (Eh) 235 Turbidity 149.4
Weather Cond. Cloudy	Ext'l Amb. Temp. °C (prior sampling event)
Time 1012 Gal. Purged	Time Gal. Purged
Conductance 31.3.5 pH 6.71	Conductance pH
Temp. °C [15.24]	Temp. °C
Redox Potential Eh (mV) 235	Redox Potential Eh (mV)
Turbidity (NTU) <u>149.4</u>	Turbidity (NTU)
Time Gal, Purged	Time Gal. Purged
Conductance pH	Conductance pH
Temp. °C	Temp. °C
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)

tthe wat he dout disticted a contraction several endines. (see decide a lot of the second of the second of the

ļ

Cronienarci montoring donity resolutio	e man (covr.)							
Volume of Water Purged)	gallon(s)					
Pumping Rate Calculation	l							
Flow Rate (Q), in gpm. S/60 = β]		Time to evac T = 2V/Q =	and the second se		olumes (2V)		
Number of casing volume	s evacuate	ed (if oth	er than two)					
If well evacuated to dryne	ss, numbe	r of galk	ons evacuated	NII	•			
Name of Certified Analyti		-						
Type of Sample	Sample	e Taken	Sample Vol (indicate if other than as	Filt	ered	Preservative		rvative ded
	Y	N	specified below)	Y	N	Туре	Y	N
VOCs	152	ä	3x40 ml		129	HCL	×	
Nutrients	IX		100 ml		N	H2SO4		
Heavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 ml			No Preserv.	D	
Gross Alpha			1,000 ml			HNO3		
Other (specify)	B	í 🗖	Sample volume		8	-		Ø
Chloride						If preservative is us Type and Quantity of Preservative:		<i>i</i>
Comment Arrived on site at	1005			8 1			instructio	>n
FArrived on site at	Contraction (Second	control	rainer and Kyan	TAIME	a pre	sont for sav	winnes.	
event. Samples were		crea i	at 1015, water (vas a	- ligh	t orange c	0105,	
Left sile at 1020	· ·							
Continous Pumping	well,							
	Do i	not touch	this cell (SheetName)					
n L and, 2,, and 1,, a Şç Ç			· · · ·					

White Mesa Mili Field Data Worksheet for Groundwater

ATTACHN WHITE MESA UR FIELD DATA WORKSHEET	ANIUM MILL See instruction
Description of Sampling Event: 1st Quarter C	nioroform 2011
Location (well name): TW4-20	and initials: Garrin Palmer 16f
Date and Time for Purging 2/23/2011 and	d Sampling (if different)
Well Purging Equip Used: B pump or D bailer	Well Pump (if other than Bennet) Grund Fos
Sampling Event Quarterly culoroform Prev.	Well Sampled in Sampling Event TU4-4
pH Buffer 7.0	H Buffer 4.0
Specific Conductance 499	Well Depth(0.01ft):
Depth to Water Before Purging 76, 85 Casing	g Volume (V) 4" Well: O (.653h) 3" Well: O (.367h)
Conductance (avg) 3697 pH of	Water (avg) 5.87
Well Water Temp. (avg) [15,30] Redox Potenti	al (Eh) 314 Turbidity O
Weather Cond. Sunny	Ext'l Amb. Temp. °C (prior sampling event)
Time 1417 Gal. Purged	Time Gal. Purged
Conductance 3697 pH 5.87	Conductance pH
Temp. °C	Temp. °C
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)
Time Gal. Purged	Time Gal. Purged
Conductance pH	Conductance pH
Temp. °C	Temp. °C
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)

Date: 03/22/2010 Rev. 6

Volume	ofV	Vater	Purged
--------	-----	-------	--------

gallon(s)

Pumping Rate Calculation

Flow Ra	le	<u>(Q),</u>	in gp	om.	
S/60 =	F	•			7
0100				·	_1

Number of casing volumes evacuated (if other than two)

 \mathcal{O}

If well evacuated to dryness, number of gallons evacuated

Name of Certified Analytical Laboratory if Other Than Energy Lab

Type of Sample	Sample Taken		Sample Vol (indicate if other than as	Filtered		Preservative	Preservative Added	
	Y	N	specified below)	Y	N	Туре	Y	N
VOCs	8		3x40 ml	. 🗆	128	HCL		
Nutrients	X	5 1	100 ml		X	H2SO4		
Heavy Metals		۵	250 ml			HNO3		· 🖸
All Other Non Radiologics	1		250 ml	D		No Preserv.		
Gross Alpha		្រ 🗖 🖓	1,000 ml			HNO3		
Other (specify)	8	<u> </u>	Sample volume		Ø			

T = 2V/O =

Time to evacuate two casing volumes (2V)

C	hlori	ide	
		•	

If preservative is used, specify Type and Quantity of Preservative:

See instruction

Comment

1

Arrived on site at 1408. Garrin and Ryan S. Present for sampling event. Samples were collected at 1418. Water was clear. Left site at 1430. Continous pumping Well.

Do not touch this cell (SheetName)

АТТАСНМ	ENT 1 Attachment 1							
OENISON DAA WHITE MESA URA MINES FIELD DATA WORKSHEET								
Description of Sampling Event: 1st Quarter Chloroform 2011 Sampler Name								
Location (well name): TW4-21	and initials: Garrin Palmer / 6P							
Date and Time for Purging 2/21/2011 and	Sampling (if different)							
Well Purging Equip Used: B pump or D bailer W	Vell Pump (if other than Bennet)							
Sampling Event Ovarterly Chieform Prev. V	Vell Sampled in Sampling Event							
pH Buffer 7.0 7.0 pH	Buffer 4.0 4.0							
Specific Conductance 949 µMHOS/ cm	Well Depth(0.01ft): 121							
Depth to Water Before Purging 58,54 Casing	Volume (V) 4" Well: 40.77 (.653h) 3" Well: 0 (.367h)							
Conductance (avg) 3266 pH of	Water (avg) 6.46							
Well Water Temp. (avg) [5,23] Redox Potentia	1 (Eh) 301 Turbidity 15,35							
Weather Cond. Cloudy	Ext'l Amb. Temp. °C (prior sampling event)							
Time 1316 Gal. Purged 187	Time 1317 Gal. Purged 204							
Conductance 3257 pH 6.97	Conductance 3267 pH 6.96							
Temp. °C [5.25]	Temp. °C [15.23]							
Redox Potential Eh (mV) 306	Redox Potential Eh (mV) 303							
Turbidity (NTU) 34.8	Turbidity (NTU)							
Time 1318 Gal. Purged 221	Time 314 Gal Purged 238							
Conductance 3270 pH 6.45	Conductance 3270 pH 6.97							
Temp. °C 15,26	Temp. °C [15, 21]							
Redox Potential Eh (mV) 299	Redox Potential Eh (mV) 297							
Turbidity (NTU)	Turbidity (NTU)							

Volume of Water Purged 240,55

gallon(s)

Time to evacuate two casing volumes (2V)

NIA

T = 2V/Q = 4,79

Pumping Rate Calculation

Flow Rate (Q), in gpm. S/60 = 17

Number of casing volumes evacuated (if other than two)

If well evacuated to dryness, number of gallons evacuated

Name of Certified Analytical Laboratory if Other Than Energy Lab

Sample Taken		Sample Vol (indicate if other than as	Filtered		Preservative	Preservative Added	
Y	N	specified below)	Y	N	lype	Y	N
K		3x40 ml			HCL		Ū
. ⊠gi		100 ml		ß	H2SO4	X	
		250 ml			HNO3		
		250 ml			No Preserv.		
		1,000 ml			HNO3		
N		Sample volume		۲	-		Ø
					•		ý
l. Wat overpu	er we mping	is clear through	shout Left	purg site	e. Paramete at 1326.	rs w	ere
)	1245. Por 14	1245. Garri Por 14 Minu	Y N specified below) S I 3x40 ml IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Y N specified below) Y 133 3x40 ml 1 133 100 ml 1 12 250 ml 1 12 250 ml 1 13 1,000 ml 1 14 1,000 ml 1 15 1,000 ml 1 16 1,000 ml 1 17 1,000 ml 1 18 Sample volume 1 19 1,000 ml 1 19 Sample volume 1 10 1,000 ml 1 10 1,000 ml	Y N specified below) Y N Image: Second state of the second st	Y N specified below) Y N Type B 3x40 ml D B HCL B 100 ml D B H2SO4 D 250 ml D HNO3 D 250 ml D No Preserv. D 1,000 ml D HNO3 B Sample volume D HNO3 B Sample volume D HNO3 B Sample volume D HNO3 Sample volume D Sample volume D Sample volume D Sample volume Sample volume Verservative: Sample volume Sample volume Sample volume Sample volume Sample volume Sample volume Sample volume Sample volume <td>Y N specified below) Y N 1ype Y S3 3x40 ml Image: State State</td>	Y N specified below) Y N 1ype Y S3 3x40 ml Image: State

Do not touch this cell (SheetName)

191.5.000.10

DENISONDA MINES ATTACHM WHITE MESA UR FIELD DATA WORKSHEET	ANIUM MILL See instruction
Description of Sampling Event: 1st Quarter Chi	
Location (well name): TWH-22	and initials: <u>Garrin Palmer / GP</u>
Date and Time for Purging 2/22/2011 and	Sampling (if different) 2/23/2011
Well Purging Equip Used: 🔀 pump or 🔲 bailer W	Vell Pump (if other than Bennet)
	Vell Sampled in Sampling Event
pH Buffer 7.0 $7_{\circ}O$ pH	I Buffer 4.0 4.0
Specific Conductance 999 µMHOS/ cm	Well Depth(0.01ft): 113.5
Depth to Water Before Purging 54,24 Casing	Volume (V) 4" Well: 39.68 (.653h) 3" Well: (.367h)
Conductance (avg) 4047 pH of	Water (avg) 6.79
Well Water Temp. (avg) [14.30] Redox Potentia	l (Eh) 416 Turbidity 6.3
Weather Cond. Sunny	Ext'l Amb. Temp. °C (prior sampling event)
Time 1027 Gal. Purged 34	Time Gal. Purged
Conductance 4047 pH 6.79	Conductance pH
Temp. °C 14.30	Temp. °C
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)
Time Gal. Purged	Time Gal. Purged
Conductance pH	Conductance pH
Temp. °C	Temp. °C
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)

41.3346.3 202 - CH-CH2 TWM 11102030 / CH-CH2 EVM 3-THADILEO-(264) - Princed 11/4/2010 12/30 MK from SW10500011

.

.

> Volume of Water Purged 43.01

gallon(s)

Time to evacuate two casing volumes (2V)

11

43.01

T = 2V/Q = 4.55

Pumping Rate Calculation

Flow Rate (Q), in gpm. S/60 = 17

Number of casing volumes evacuated (if other than two)

If well evacuated to dryness, number of gallons evacuated

Name of Certified Analytical Laboratory if Other Than Energy Lab NIA

Type of Sample	Sample Taken		Sample Vol (indicate if other than as	Filtered		Preservative	Preservative Added		
The or prime	Y	N	specified below)	Y	N	Туре	Y	N	
VOCs	52		3x40 ml		8	HCL	Ø		
Nutrients	2		100 ml		Ø	H2SO4			
Heavy Metals			250 ml			HNO3			
All Other Non Radiologics			250 ml			No Preserv.			
Gross Alpha			1,000 ml			HNO3			
Other (specify)	8		Sample volume	D	. 🔀			X	
Chloride If preservative is used, specify Type and Quantity of Preservative:									
Comment							instructio		
Arrived on site at 1000, Garrin and Ryan S. present For Purge. Purge began at 1025. Pump ran for 2 minutes and 53 seconds. Well ran dry. water was clear throughout purge. Farameters were collected and copied from the overpumping field sheet. Left site at 1035. Arrived on site at 0736. Garrin and Ryan S. present for sampling. Depth to water before samples were collected was 54.12. Samples were collected at 0740. Left site at 0745.									
	Do 1	not touch	this cell (SheetName)						

DENISONDIA MINES FIELD DATA WORKSHEET	ANIUM MILL 🧬 See instruction						
Description of Sampling Event: 1st Quarter Culoroform 2011							
Location (well name): TWH-22R	and initials: Garria Palmer/6P						
Date and Time for Purging 2/22/2011 and Sampling (if different)							
Well Purging Equip Used: 🔀 pump or 🔲 bailer W	ell Pump (if other than Bennet)						
Sampling Event Quarterly Chloroform Prev. V	Vell Sampled in Sampling Event $T\omega 4 - 21$						
pH Buffer 7.0 7.0 pH	I Buffer 4.0 년. Ø						
Specific Conductance 999 µMHOS/ cm	Well Depth(0.01ft):						
Depth to Water Before Purging NA Casing Volume (V) 4" Well: 3" Well: (.653h) (.653h) (.657h)							
Conductance (avg) 14.4 pH of V	Water (avg) 8.21						
Well Water Temp. (avg) 4.41 Redox Potentia	I (Eh) 424 Turbidity O						
Weather Cond. Sunny	Ext'l Amb. Temp. °C (prior sampling event)						
Time O944 Gal. Purged 150	Time Gal. Purged						
Conductance 14.4 pH 8.21	Conductance pH						
Temp. °C 4.41	Temp. °C						
Redox Potential Eh (mV) 424	Redox Potential Eh (mV)						
Turbidity (NTU)	Turbidity (NTU)						
Time Gal. Purged	Time Gal. Purged						
Conductance pH	Conductance pH						
Temp. °C	Temp. °C						
Rcdox Potential Eh (mV)	Redox Potential Eh (mV)						
Turbidity (NTU)	Turbidity (NTU)						

Volume of Water Purged

gallon(s)

T = 2V/Q =

Time to evacuate two casing volumes (2V)

NA

Pumping Rate Calculation

Flow Rate (Q), in gpm. S/60 = 17

Number of casing volumes evacuated (if other than two)

150

If well evacuated to dryness, number of gallons evacuated

Name of Certified Analytical Laboratory if Other Than Energy Lab

Type of Sample	Sample	e Taken	Sample Vol (indicate if other than as	Filt	ered	Preservative	Preser	vative ded
i ype of Sample	Y	N	specified below)	Y	N	Туре	Y	N
VOCs	52		3x40 ml		2	HCL	X ***	
Nutrients			100 mi		2	H2SO4	Ø	/ -D
Heavy Metals			250 ml			HNO3		· 🛛 .
All Other Non Radiologics		0	250 ml			No Preserv.		
Gross Alpha			1,000 ml			HNO3		
Other (specify)	M	ū	Sample volume	÷				
Chloride					• • • •	If preservative is us Type and Quantity of Preservative:		y
Comment	·					See	instructio)n ·
Arrived on site at 0930. Garrin and Ryan S. present for rinsate. Rinsate began at 0935. Pumped SO Gallons of Acid Water, 50 Gallons of Soap water and SO Gallons of D.I. Water. Samples were Collected at 0944. Left site at 0950.								
Do not touch this cell (SheetName)								

ATTACHM WHITE MESA URA FIELD DATA WORKSHEET	NIUM MILL See instruction
Description of Sampling Event: 15t Quarter Ch	
Location (well name): TW4-23	and initials: Garria Palmer 1.68
Date and Time for Purging 02/15/2011 and	Sampling (if different)
Well Purging Equip Used: 🔀 pump or 🔲 bailer W	ell Pump (if other than Bennet)
Sampling Event Quarterly Culoroform Prev. W	Vell Sampled in Sampling Event
pH Buffer 7.0 7.0 pH	Buffer 4.0 4.0
Specific Conductance 499 µMHOS/ cm	Weil Depth(0.01ft):
Depth to Water Before Purging 65 74 Casing	Volume (V) 4" Well: 31.47 (.653h) 3" Well: 0 (.367h)
Conductance (avg) 3597 pH of V	Water (avg) 6.54
Well Water Temp. (avg) 13.43 Redox Potentia	1 (Eh) 239 Turbidity 1076
Weather Cond. Sunny	Ext'l Amb. Temp. °C (prior sampling event)
Time 0950 Gal. Purged 136	Time 0851 Gal. Purged 153
Conductance 3601 pH 6.54	Conductance 3596 pH 6.54
Temp. °C [13.40]	Temp. °C
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU) 752	Turbidity (NTU)
Time 0352 Gal. Purged 170	Time 0853 Gal. Purged 187
Conductance 3597 pH 6.55	Conductance 3597 pH 6.55
Temp. °C []3. 49	Temp. °C [13.45
Redox Potential Eh (mV) 239	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)

. .

- - --

41.3366 2.348 - GR-QUD TOTA 11232016 / CR-QUD FORM,1-1900,1664-[258] - 011446112/6010 31.14 MK (1700 DKCU20016)

Volume of Water Purged 190.74 gallon(s)								
Pumping Rate Calculation								
Flow Rate (Q), in gpm.Time to evacuate two casing volumes (2V) $S/60 = \boxed{17}$ $T = 2V/Q = \boxed{3.70}$								
Number of casing volumes evacuated (if other than two)								
If well evacuated to dryness, number of gallons evacuated								
Name of Certified Analytic	cal Labor	atory if (Other Than Energy Lab	NIA				
Type of Sample	Sample	e Taken	Sample Vol (indicate if other than as	Filt	ered	Preservative		vative ded
	Y	N	specified below)	Y	N	Type	Y	N
VOCs	8		3x40 mi	, 🛛	Ø	HCL	X	
Nutrients			100 mi		N.	H2SO4	8	· 🗖 🗸
Heavy Metals			250 ml			HNO3		
All Other Non Radiologics	, 🛛		250 ml		м. 🗖	No Preserv.		
Gross Alpha			1,000 ml			HNO3		
Other (specify)	Ø		Sample volume		X			8
Chloride If preservative is used, specify Type and Quantity of Preservative:								4
							· .	********
ğ Comment	·			f	•	See	instructio	n
Arrived on site at 0830. Garma and Ryan S. present for purge purge began at 0842 Pump ran for 11 minutes and 22 seconds. Water was murky and a light orange Color and cleared towards the end of the purge: Depth to water after purge was 92.05. Parameters were copied from the overpumping field sheet. Left Site at 0906. Arrived on site at 0937. Garrin and Ryan S. Present for sampling event. Depth to water before samples were taken was 65,62. Samples were collected at 0944. Left site at 0949. Do not touch this cell (SheetName)								

-- -

_ _ _ -

ţ

40-40 - 111 - 04-045

-

DENISON DAL MINES FIELD DATA WORKSHEET	ANIUM MILL See instruction							
Description of Sampling Event: 1st Quarter Chloroform 2011								
Location (well name): TW4-23R Sampler Name and initials: Garrin Palmer/GP.								
Date and Time for Purging 02/15/2011 and Sampling (if different)								
Well Purging Equip Used: Depump or bailer Well Pump (if other than Bennet)								
Sampling Event Quarterly chloroform Prev. Well Sampled in Sampling Event TW4-14								
pH Buffer 7.0 7.0 pH Buffer 4.0 4.0								
Specific Conductance 999 µMHOS/ cm	Specific Conductance QQQ μ MHOS/cm Well Depth(0.01ft): M/A							
Depth to Water Before Purging 1/1/4 Casing Volume (V) 4" Well: (.653h) 3" Well: (.367h)								
Conductance (avg) [9.9. pH of	Water (avg) 8,07							
Well Water Temp. (avg) 13,14 Redox Potentia	l (Eh) 292 Turbidity O							
Weather Cond. Sunny	Ext'l Amb. Temp. *C (prior sampling event) - * C							
Time 0815 Gal. Purged 150	Time Gal. Purged							
Conductance [19.9 pH 8.07	Conductance pH							
Temp. °C	Temp. °C							
Redox Potential Eh (mV) 292	Redox Potential Eh (mV)							
Turbidity (NTU)	Turbidity (NTU)							
Time Gal. Purged	Time Gal. Purged							
Conductance pH	Conductance pH							
Temp. °C	Temp. °C							
Redox Potential Eh (mV)	Redox Potential Eh (mV)							
Turbidity (NTU)	Turbidity (NTU)							

1

Date: 03/22/2010 Rev. 6

Volume of	Water	Purged
-----------	-------	--------

gallon(s)

Pumping Rate Calculation

Flow Rate (Q), in gpm. S/60 = 17

Time to evacuate two casing volumes (2V) $T = 2V/Q = \sqrt{//A}$

Number of casing volumes evacuated (if other than two)

150

If well evacuated to dryness, number of gallons evacuated

Name of Certified Analytical Laboratory if Other Than Energy Lab

Type of Sample	Sample	e Taken N	Sample Vol (indicate if other than as specified below)	Filt Y	ered N	Preservative Type		vative ded N
VOCs			3x40 ml		X	HCL		
Nutrients	1 124	· 0	100 ml			H2SO4		
Heavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 ml		•0	No Preserv.	0	
Gross Alpha			1,000 ml		0	HNO3		
Other (specify)	ş		Sample volume		Ø			
chloride						If preservative is us Type and Quantity of Preservative:		
Comment								
Arrived on site at 0755. Garnin and Ryan S. on site for rinsate. Rinsate began at 0806. fumped 50 Gallons of Acid Water. 50 Gallons of soap water, and 50 Gallons of D.I. water. Samples were collected at 0815.								
hear at 0806 Pu	meed	50 1	allow of Acid	wat	er. 50) Gallons of	Sout	2
water and 50 b	allons	AF D	T. WATER S	amole	C 144	re collecte	d at	0815
Left site at 0825								- 01-
Lett site at U820,								
· • •								
						,		
				, 				
		at touch	this call (SheetNews)					
		or touch	this cell (SheetName)					

АТТАСНМ	ENT 1 Attachment 1							
DENISON DAL WHITE MESA URA								
MINES FIELD DATA WORKSHEET								
Description of Sampling Event: 1st Quarter Cl								
Location (well name): TW4-24 Sampler Name and initials: Garcia Palmer / GP								
Date and Time for Purging 02/16/2011 and Sampling (if different) 02/17/2011								
Well Purging Equip Used: Dump or bailer W	ell Pump (if other than Bennet)							
Sampling Event Quarterly Chloroform Prev. V	Vell Sampled in Sampling Event Twy-9							
pH Buffer 7.0 7.0 pH	Buffer 4.0 4.0							
Specific Conductance 994 µMHOS/ cm	Well Depth(0.01ft): 112.50							
Depth to Water Before Purging 55.60Casing Volume (V)4" Well: 37.14(.653h)3" Well: 0(.367h)								
Conductance (avg) 9042 pH of	Water (avg) 6,66							
Well Water Temp. (avg) 14,83 Redox Potentia	(Eh) 261 Turbidity 88,1							
Weather Cond. Sunny	Ext'l Amb. Temp. °C (prior sampling event)							
Time 1432 Gal. Purged 170	Time 433 Gal. Purged 187							
Conductance 9041 pH 6.67	Conductance 9043 pH 6.65							
Temp. °C [14.8]	Temp. ℃ 14.83							
Redox Potential Eh (mV) 267	Redox Potential Eh (mV)							
Turbidity (NTU) 43.0	Turbidity (NTU)							
Time 1434 Gal. Purged 204	Time 1435 Gal Purged 22							
Conductance 9041 pH 6.67	Conductance 9043 pH 6.66							
Temp. °C 14.84	Тетр. °С <u>14.87</u>							
Redox Potential Eh (mV) 259	Redox Potential Eh (mV) 257							
Turbidity (NTU)	Turbidity (NTU)							

01.1366 2 144 - Ch-QAD twee 113122010 / CH QAP 1444,3-Tanplata-(219) - Princed 12/0/2010 11.29 42 2004 2001

Groundwater Monitoring Quality Assuran	ce Plan (QAP)						Date: 03,	/ <i>11</i> /2010 Key.
Volume of Water Purged	226	.1	gallon(s)					
Pumping Rate Calculatio	n							
Flow Rate (Q), in gpm.	-1		Time to evac			rolumes (2V)		
S/60 = 7	_]		T = 2V/Q =	4.36	<u>,</u>	4		
Number of casing volume	s evacuate	ed (if oth	er than two)					
If well evacuated to dryne	ss, numbe	er of galle	ons evacuated	NIA	·]			
Name of Certified Analyt	ical Labor	atory if (Other Than Energy Lab	NIA				
Type of Sample	Sample	e Taken	Sample Vol (indicate if other than as	Filt	ered	Preservative		vative ded
	Y	N	specified below)	Y	N	Туре	Y	N
VOCs	8		3x40 ml			HCL		
Nutrients Heavy Metals			100 ml 250 ml			H2SO4 HNO3	D B	
All Other Non Radiologics			250 ml			No Preserv.		
Gross Alpha			1,000 ml			HNO3		
Other (specify)			Sample volume					
Chloride If preservative is used, specify Type and Quantity of Preservative:								
Comment See instruction								
Arrived on site at	1408. G	arria	and Ryan S. P.	resent	for	Purge. Purge	beau	en at
1477 Pune ran for	~ 13 n	<i>sinute</i>	is and 30 sec	ords.	wate	r was clear	- throu	Inhout
PURAR, DRALL to Wa	ter al	fter p	urge was 70.5	2. Par	amet	ers were co	pied (from
Purge. Depth to water after purge was 70.52. Parameters were copied from the overpumping field sheet. Left site at 1449. Arrived on site at 1045. Garrin, Tenner, and Ryan S. all present for sampling Arrived on site at 1045. Garrin, Tenner, and Ryan S. all present for sampling								
			- in and	RVar.	5. 611	present to	- samp	ring
Arrived on site at event. Depth to wat	er bef	ore sa	mples were coi	lected	(wa	5 55. 76. 5ar	rpres	wester [
Collected at 0750	'- heft	site	- at 0755.				·	
Do not touch this cell (SheetName)								

OENISON DAL MINES FIELD DATA WORKSHEET	ANIUM MILL See instruction							
Description of Sampling Event: 1st Ounster Chloroform 2011								
Location (well name): TWH-25	and initials: Garria Palmer / 6P							
Date and Time for Purging 02/15/2011 and Sampling (if different) 02/16/2011								
Well Purging Equip Used: 🖾 pump on 🗔 bailer 🛛 V	Vell Pump (if other than Bennet)							
Sampling Event Quarterly thissoform Prev. V	Well Sampled in Sampling Event TW4-23							
pH Buffer 7.0 7.0 pH Buffer 4.0 4.0								
Specific Conductance 999 µMHOS/ cm	Well Depth(0.01ft): 1.34.8							
Depth to Water Before Purging 46.54 Casing Volume (V) 4" Well: 57.61 (.653h) 3" Well: (.367h)								
Conductance (avg) 2468 pH of	Water (avg) 7.15							
Well Water Temp. (avg) 14,45 Redox Potentia	al (Eh) 210 Turbidity 2129							
Weather Cond. Sunny	Ext'l Amb. Temp. °C (prior sampling event) - 2*C							
Time 0955 Gal. Purged 272	Time 0956 Gal. Purged 289							
Conductance 2474 pH 7.17	Conductance 2977 pH 7.15							
Temp. °C 14.35	Temp. °C							
Redox Potential Eh (mV) 212	Redox Potential Eh (mV) 211							
Turbidity (NTU)	Turbidity (NTU) (374							
Time 0457 Gal. Purged 306	Time 0958 Gal. Purged 323							
Conductance 2459 pH 7.15	Conductance 2962 pH 7.16							
Temp. °C	Temp. °C [14.49							
Redox Potential Eh (mV) 210	Redox Potential Eh (mV) 209							
Turbidity (NTU)	Turbidity (NTU)							

Volume of Water Purged 325, 21 gallon(s)								
Pumping Rate Calculation								
Flow Rate (Q), in gpm. S/60 = 17 Time to evacuate two casing volumes (2V) T = 2V/Q = 6.77								
Number of casing volumes evacuated (if other than two)								
If well evacuated to dryness, number of gallons evacuated								
Name of Certified Analyti	ical Labor	atory if (Other Than Energy Lab	NIA				
Type of SampleSample TakenSample Vol (indicate if other than as				ered	Preservative - Type	Preservative Added		
	Y	N	specified below)	Y	N		Y	N
VOCs	8		3x40 ml		8	HCL	23	
Nutrients Heavy Metals			100 ml		Image: Second se	H2SO4		
All Other Non Radiologics			250 ml 250 ml			HNO3 No Preserv.		
Gross Alpha			1,000 ml			HNO3		
Other (specify)			Sample volume					
other (specify)	Ø		Sample volume		X			
Chlonide Type and Quantity of Preservative:								
Comment								
Arrived on site at 0429. Garrin and Ryan S. present for purge. Purge began at 0939. Pump ran for 19 minutes and 12 seconds. Water was clear throughout purge. Depth to water after purge was 96.90. Parameters were copied from the overpumping field sheet. Lift site at 1009.								
Arrived on site at 1003. Garrin and Ryan S. present for sampling event. Depth to water before samples were collected was. 46,40. Samples were collected at 1013. Left site at 1016.								
Do not touch this cell (SheetName)								

White Mesa Mill Field Data Worksheet for Groundwater

* Mill - Grigindwater Discharge Permit Groundwater Monitoring Quality Assurance Plan (QAP)

DENISON DALA MINES FIELD DATA WORKSHEET	ANIUM MILL See instruction							
Description of Sampling Event: 1st Quarter Chloroform 2011								
Location (well name): TW4-26 Sampler Name and initials: Garria Palmer / 6P								
Date and Time for Purging 2/21/2011 and Sampling (if different) 2/22/2011								
Well Purging Equip Used: 🔯 pump or 🔲 bailer 🦷 W	/ell Pump (if other than Bennet)							
Sampling Event Quarterly Chloroform Prev. V	Well Sampled in Sampling Event TW4-16							
pH Buffer 7.0 7.0 pH	HBuffer 4.0 4.0							
Specific Conductance 999								
Depth to Water Before Purging64.34Casing Volume (V)4" Well:14.13(.653h)3" Well:0(.367h)								
Conductance (avg) 3132 pH of V	Water (avg) 4.85							
Well Water Temp. (avg) 9,81 Redox Potentia	l (Eh) 537 Turbidity 24.9							
Weather Cond. Partly Cloudy	Ext'l Amb. Temp. *C (prior sampling event)							
Time 0942 Gal. Purged 17	Time Gal. Purged							
Conductance 3132 pH 4.85	Conductance pH							
Temp. °C 9.9	Temp. °C							
Redox Potential Eh (mV) 537	Redox Potential Eh (mV)							
Turbidity (NTU)	Turbidity (NTU)							
Time Gal. Purged	Time Gal. Purged							
Conductance pH	Conductance pH							
Temp. °C	Temp. °C							
Redox Potential Eh (mV)	Redox Potential Eh (mV)							
Turbidity (NTU)	Turbidity (NTU)							

Date: 03/22/2010 Rev. 6

Groundwater Monitoring Quality Assurance	e rian (QAP)							
Volume of Water Purged	17.6	8	gallon(s)					
Pumping Rate Calculation								
Flow Rate (Q), in gpm.			Time to evac			olumes (2V)		
S/60 = 17			T 2V/Q =	1.66				
Number of casing volumes	evacuate	ed (if oth	er than two)	1.25	5			
If well evacuated to drynes	s, numbe	er of galle	ons evacuated	17.6	8			
Name of Certified Analytic	cal Labor	atory if (Other Than Energy Lab	NIA				
Type of Sample	Sample Taken Sample Vol (indicate if other than as		Filtered		Preservative	Preservative Added		
- ype or oumpre	Y	N	specified below)	Y	N	Туре	Y	N
VOCs	X		3x40 ml		53	HCL	ß.	
Nutrients			100 ml		X	H2SO4		
Heavy Metals			250 ml			HNO3		
All Other Non Radiologics		- 🗆	250 ml			No Preserv.		
Gross Alpha			1,000 ml			HNO3		
Other (specify)	23	Π.	Sample volume		53		α	₩ N
Chloride Type and Quantity of Preservative:								
Comment Arrived on site at O			and Pure C O	بل و و 2 و ۱	Fre	See		
0941. Pump ran for	1 min	ute a	nd 4 Seconds.	weii	ran d	ry. Water u	ات حمد	car
throughout purge.			s were copied	L TTOM	~ TN	- vuarumpin	う ```	
Sheet. Left site at 0950. Arrived on site at 0753, Carrin and Ryan S. present for sampling event.								
Arrived on site at 075	3. Car	rin an	d Ryan S. Presc	AT 10	г <i>S</i> ам	pung event		
Depth to water befo				, was	64.	so. Samples	were	
Collected at 0800.	Left	site	at 0804.			1]
	Do r	ot touch	this cell (SheetName)					

ATTACHM WHITE MESA UR FIELD DATA WORKSHEET	NIUM MILL Sec instruction
Description of Sampling Event: [15+ Quarter Ch	
	Sampler Name
Location (well name): TW4-60	and initials: Garrin Palmer/6P
Date and Time for Purging 2/23/2011 and	Sampling (if different)
Well Purging Equip Used: Dpump or bailer W	ell Pump (if other than Bennet)
Sampling Event Quarterly Chloroford Prev. V	Vell Sampled in Sampling Event TWH-20
pH Buffer 7.0 7.0 pH	Buffer 4.0
Specific Conductance 9999 µMHOS/ cm	Well Depth(0.01ft):
Depth to Water Before Purging MIA Casing	Volume (V) 4" Well: 3" Well: (.653h) (.653h) (.367h)
Conductance (avg) 2.6 pH of V	Water (avg) 7.10
Well Water Temp. (avg) 16-43 Redox Potentia	(Eh) 280 Turbidity
Weather Cond. SURRY	Ext'l Amb. Temp. °C (prior sampling event) 2°C
Time 1449 Gal. Purged	Time Gal. Purged
Conductance 2.6 pH 7.10	Conductance pH
Temp. °C 16, 43	Temp. °C
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)
Time Gal Purged	Time Gal. Purged
Conductance pH	Conductance pH
Temp. °C	Temp. °C
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)

Volume of Water Purged

gallon(s)

Pumping Rate Calculation

Flow Rate (Q), in gpm. S/60 =

Number of casing volumes evacuated (if other than two)

Ċ

If well evacuated to dryness, number of gallons evacuated

Name of Certified Analytical Laboratory if Other Than Energy Lab

Type of Sample	Sample Taken		Sample Vol (indicate if other than as	Fih	ered	Preservative Type	Preservative Added	
	Y	' N	specified below)	Y	N	Type	Y	N
VOCs			3x40 mł		58	HCL	× X	
Nutrients	2	Q	100 ml		Ø	H2SO4	53	
Heavy Metals			250 ml			HNO3		
All Other Non Radiologics		۵	250 ml			No Preserv.		
Gross Alpha		D	1,000 ml	Ó		HNO3		
Other (specify)	Ø		Samplé volume	D ,	Ģ		ם.	ß

T = 2V/Q =

Time to evacuate two casing volumes (2V)

C)

Chloride

If preservative is used, specify Type and Quantity of Preservative:

See instruction

event

Comment Arrived on site at 1445. Gerrin Palmer present for sampling Samples were collected at 1450. Left site at 1458. D. I. Blank

Do not touch this cell (SheetName)

ATTACHM WHITE MESA UR MINES FIELD DATA WORKSHEET	ANIUM MILL See instruction
Description of Sampling Event: 1st Quarter Ch	loroform 2011
Location (well name): TU4-65	Sampler Name and initials: Garrin Palmer/6P
Date and Time for Purging 2/17/2011 and	Sampling (if different)
Well Purging Equip Used: 🖾 pump or 🗖 bailer 🛛 V	Vell Pump (if other than Bennet)
Sampling Event Quarterly Chloroform Prev. V	Well Sampled in Sampling Event $Twg - 2g$
pH Buffer 7.0 7.0 pH	I Buffer 4.0 4.0
Specific Conductance 999 µMHOS/ cm	Well Depth(0.01ft): 25
Depth to Water Before Purging 71.02 Casing	Volume (V) 4" Well: 3" Well: (.653h) (.367h)
Conductance (avg) 3135 pH of	Water (avg) 6. 71
Well Water Temp. (avg) 15,24 Redox Potentia	1 (Eh) 235 Turbidity 149.4
Weather Cond. Cloudy	Ext'l Amb. Temp. *C (prior sampling event)
Time Gal. Purged	Time Gal. Purged
Conductance pH	Conductance pH
Temp. °C	Temp. °C
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)
Time Gal. Purged	Time Gal. Purged
Conductance pH	Conductance pH
Temp. °C	Temp. °C
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)

Mill - Groundwater Direbarge Br _ **

Groundwater Monitoring Quality Assurance	e Plan (QAP)						Date: US	/22/2010 Rev.
Volume of Water Purged	0	7	gallon(s)					
Pumping Rate Calculation								
Flow Rate (Q), in gpm. S/60 = 3]		Time to evac T = 2V/Q =			olumes (2V)]		
Number of casing volumes	evacuate	ed (if oth	er than two)					
If well evacuated to drynes	is, numbe	r of gallo	ons evacuated	N	A			
Name of Certified Analytic	cal Labor	atory if (Other Than Energy Lab	NI	'A			
Type of Sample	Sample Taken		Sample Vol (indicate if other than as	Filtered		Preservative - Type	Preservative Added	
	Y	N	specified below)	Y	N		Y	N
VOCs	54		3x40 ml		X	HCL	X	
Nutrients	لچا		100 ml		123	H2SO4	R	
Heavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 ml			No Preserv.		
Gross Alpha			1,000 ml			HNO3		
Other (specify)	<u>⊠</u>	. 🗆	Sample volume				D	123
Chloride						If preservative is us Type and Quantity of Preservative:		,
Comment						See years	instructio	n
Duplicate	09	TI	w4-19					
-					<u></u>			
[Do r	ot touch	this cell (SheetName)					

White Mesa Mill Field Data Worksheet for Groundwater

Date: 03/22/2010 Rev. 6

 Mill - Groundwater Discharge Permit Groundwater Monitoring Quality Assurance Plan (QAP)

DENISONDAA MINES HELD DATA WORKSHEET	ANIUM MILL See instruction
Description of Sampling Event: 15+ Quarter Ch	Voroform 2011
Location (well name): エルリ・フロ	and initials: Garria Palmer 1.6P
Date and Time for Purging 2/22/2011 and	Sampling (if different) 2/23/2011
Well Purging Equip Used: 🔯 pump or 🔲 bailer V	Vell Pump (if other than Bennet)
Sampling Event Quarterly chloroform Prev.	Well Sampled in Sampling Event Tiug-11
pH Buffer 7.0 7.0 pH	1 Buffer 4.0 4.0
Specific Conductance 949 µMHOS/ cm	Well Depth(0.01ft):
Depth to Water Before Purging 56.59 Casing	Volume (V) 4" Well: $36_{2}g2$ (.653h) 3" Well: O (.367h)
Conductance (avg) 2199 pH of	Water (avg) 6.32
Well Water Temp. (avg) 14.47 Redox Potentia	I (Eh) 380 Turbidity 43.8
Weather Cond. Sunny	Ext'l Amb. Temp. °C (prior sampling event) 20ビ
Time Gal. Purged	Time Gal. Purged
Conductance pH	Conductance pH
Temp. °C	Temp. °C
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)
Time Gal. Purged	Time Gal. Purged
Conductance pH	Conductance pH
Temp. °C	Temp. °C
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)

61 3144 2 162 - 00-000 row 1130200 / 00-000 row.-{.htmpsee-{253} - Prissee 12/4/2430 13.49 W Even Decuperate

Mill - Groundwater Discharge Permit
 Groundwater Monitoring Quality Assurance Plan (QAP)

Volume of Water Purged 40.8

gallon(s)

T = 2V/Q = -

Time to evacuate two casing volumes (2V)

4.33

١Ô

40.8

Pumping Rate Calculation

Flow Rate (Q), in gpm. S/60 = 17

Number of casing volumes evacuated (if other than two)

If well evacuated to dryness, number of gallons evacuated

Name of Certified Analytical Laboratory if Other Than Energy Lab

Type of Sample	Sample	Sample Taken Sample Vol (indicate if other than as		han as		Preservative Type	Ad	vative dcd
	Y	N	specified below)	Y	N		Y	N
VOCs	×		3x40 ml		Ø	HCL	M	
Nutrients			100 ml		X	H2SO4	X	
Heavy Metals			250 ml			HNO3		
All Other Non Radiologics	· 🗆		250 ml			No Preserv.		
Gross Alpha			1,000 ml			HNO3		
Other (specify)	5 2	, D	Sample volume		_ G 2			, 9 4
<u>Chloride</u> If preservative is used, specify Type and Quantity of Preservative:								y
Comment See instruction								n
Duplicate of TW4-10								
Do not touch this cell (SheetName)								

White Mesa Mill Field Data Worksheet for Groundwater Date: 03/22/2010 Rev. 6

}

 \sim

ſ

Weekly and Monthly Depth to Water Data

(

 \bigcirc

C

Date	4-2011		Name Tanner Holliday
<u>Time</u>	Well	Depth	Comments
0825	MW-4	71.03	Flow Flow Motor was Frozen
			Meter 357331.66
0818	TW4-15	31.97	Flow 20 Flow Meter struggling doe t
			Meter 47480.0
0800	TW4-19	88.31	Flow 6.4 GPM
			Meter 1082628.43
0815	TW4-20	70.75	Flow I.4 CPM
			Meter 1425(3.74
0830 i	TW4-4	78.71	Flow 8.5 GPM
			Meter 278470.5
<u></u>			
		····	
	Water:	130283	

P 1/4/11

Date 1/10/2011

 \bigcirc

Name Tanner Holliday

<u>Time</u>	Well	<u>Depth</u>	<u>Comments</u>
1356	MW-4	69.51	Flow 2.4 GPIN
			Meter 362172.38
1329	TW4-15	75.34	Flow 5,4 GPM
			Meter 47861.0
1325	TW4-19	63.39	Flow 6.8 GPM
			Meter 1082628.34
1351	TW4-20	79 76	Flow 1.6 GPM
			Meter 144699.81
1405	TW4-4	83.04	Flow 8.2 GPM
			Meter 284375.1
<u></u>			
<u> </u>			
	·		
·	,		
	Water:	14.5871	

Chloroform Wells

Date 1 - 11 - 2011

(

Name Garrin falme 3 Ryan Schierman

<u>Time</u>	<u>Well</u>	Depth	Comments
0950	MW-4	73.55	
0953	TW4-1	64.09	
0952	TW4-2	67.12	
<u>0945</u>	TW4-3	49.64	
0949	TW4-4	73.55	83.03
0943	TW4-5	56.81	
0957	TW4-6	71.00	
0949	TW4-7	66.50	
<u>0947</u>	TW4-8	66.98	
<u>0944</u>	TW4-9	54.76	<u> </u>
<u>0941</u>	TW4-10	57.09	
- 102L	TW4-11	58.34	
	TW4-12	39.51	
1009	TW4-13	47.22	47.22
1006	TW4-14	88.28	
0939	TW4-15	81.82	
1018	TW4-16	65.63	
1016	TW4-17	76.60	
09:25	TW4-18	57.37	
/033	TW4-19	63.83	
09:35	TW4-20	66.96	
0923	TW4-21	58.45	
0933	TW4-22	54.83	
1001	TW4-23	66.05	
09:32	TW4-24	56.29	
09:18	TW4-25	46.65	
0958	TW4-26	64.75	
\sim			

 \cap

Date 1-17-2011

Name Garrin Palmer

Time Well **Depth Comments** Flow 4.3 CPM **MW-4** 1226 64.93 Meter 367383.34 TW4-15 Flow Power is off 1230 68.07 Meter 48286.0 TW4-19 Flow 7.4 6PM 85.35 1250 Meter 1123725.31 TW4-20 Flow Power is off 65.48 1231 Meter 146763.38 TW4-4 72.35 Flow 8.3 G-PM 119/2011 1221 Meter 289276.3 1 Water: 159607 - \bigcirc

"

	-	Depth to	Water
Date /·	24 <i>-20</i> 11		Name Ray Palmer
Time	Well	<u>Depth</u>	<u>Comments</u>
1037	MW-4	69.04	Flow 4.4 Gpm Meter 37,2817.5
1030	TW4-15	82.60	Flow 5, 3 GPM Meter 048693 0
1101	TW4-19	61.88	Flow 7.6 GPM Meter 1/23721.6
1024	TW4-20	65757	Flow 1.4 Gill Rump Nerds Replaced
1046	TW4-4	69.12	Flow 7.1 GPM Meter 294212.6
_	Water:	176452	R 1.2.4.2011

Ο

Ο

Date 1.31.2011

 \bigcirc

Name Ryan Palmer

<u>Time</u>	Well	<u>Depth</u>	Comments	
0820	MW-4	70.08	Flow 4.4 GAM Meter 378457.4	
0813	TW4-15	73.9()	Flow 5.4 GPM Meter 490850	
<u> 1</u> 915	TW4-19	86.37	Flow 7.5 GPM Meter 1/85911.4	
0801	TW4-20	77.23	Flow 1.3 (1PM 1et T lunp on V bick later . Meter 150587.2	
1829	TW4-4	6922	Flow 8.5 Gpm Meter 299428.1	
	Water:	1989.39		

(ell 4A 9.96 INT 3.98

 \bigcirc

 \bigcirc

 \bigcirc

	Date 2.	7-2011		Name Tanner Holliday	-
	Time	Well	<u>Depth</u>	Comments	1
	1409	MW-4	66.91	Flow 25 GPM	
				Meter 381214.43	
	1403	TW4-15	71.50	Flow 5.6 GPM	-
				Meter 49273.0	4
	1427	TW4-19	61.51	Flow 8.0 GPM	
				Meter 1185926.09	· ·
	1357	TW4-20	64.39	Flow Prime Pute is feally Low fun	Alecto changed
\bigcirc					change and ch
	1415	TW4-4	72.92	Flow fine fit is feally low fun Meter 151172.44 Flow 8.6 GPM Meter 362265.6	Noset Coupt of
					soy.
		_			
		Water:	217210]

Date 2.1.5.2011

Name Fran PalmER

<u>Time</u>	<u>Weil</u>	<u>Depth</u>	<u>Comments</u>	
1416	MW-4	70.76	Flow 4.5 GPM Meter 388892.4	
1410	TW4-15	75.57	Flow 5: 8- GPM Meter 49839	
1439	TW4-19	88.28	Flow 9.1 Gpm Meter 1271098.7 Jump-7 14	w Arrival
140.3	TW4-20	65.93	Flow films Has Completely stopped with Meter 15/172.4 Lephace ter	
1422	TW4-4	69.31	Flow 9.0 GPM Meter 309585.8	
······	Water:	23.5798		

-0

 \bigcirc

 \bigcirc

Date 2-21-2011

 \bigcirc

()

 \bigcirc

Name Tanner Holliday

<u>Time</u>	Well	Depth	Comments
1252	MW-4	75.01	Flow Needs a new Meter
<u> </u>			Meter 314335.18
1248	TW4-15	78.34	Flow 5.4 GPM
			Meter 30247.0
1320	TW4-19	63.14	Flow 8.0 GPM
			Meter 1280734.55
0800	TW4-20	65.12	Flow Surge + Bail performed today Meter Pump not installed back in hole
1300	TW4-4	70.03	Flow 2.0. Lid was aff and Meder was frozen Meter 314919.0
······································			
1545	TIW4-20		Pump inters Insvalled & Set to pump. program will need to be Altered
			Due to pump Volume Increasing
			Flux 10.0 GARM
		-	Meter 151213.2
	Water:	259559	

Date 2/28/2011

C

ť

ř,

ć

3

Name Tanner Holliday

			<u>J</u>
<u>Time</u>	Well	Depth	Comments
1004	MW-4	75.33	Flow 2.3 GPM
			Meter 4018383.40
1253	TW4-15	78.68	Flow 5.5 GPM
,	•••	· · · · ·	Meter 50784.55
1320	TW4-19	81.03	Flow 6.7 GPM
			Meter 1354037.88
1248	TW4-20	69.35	Flow ID GPM
			Meter 1567 155. 10
1258	TW4-4	69.05	Flow 7.6 GPM
			Meter 322175.64
	· ·		
	<u> </u>	_ <u></u>	
•			
<u> </u>			~
		14	
	Water:	276466	

E The

5

٦

.

• **•** | 1

ł

Date 3-7-2011

 \bigcirc

 \bigcirc

Name Tanner Holliday

<u>Time</u>	<u>Well</u>	<u>Depth</u>	<u>Comments</u>
1000	MW-4	75.00	Flow 2.2 GPM
		-	Meter 407403.24
0954	TW4-15	80.13	Flow 5.6 GPM
			Meter 51170.0
1500	TW4-19	62.01	Flow g.o
m 12 1			Meter 1354043.85
ંવપવે	TW4-20	67.50	Flow 10.2 GPM Meter 160769.22
			Meter 16076922
1007	TW4-4	70.01	Flow 8.3 GPM
		:	Meter 327241.2
	· ·		
	Water:	301101	

13.27 285393

•.

4.1

Date 3-14-11

 \bigcirc

 \bigcirc

Name Garrin Palmer

<u>Time</u>	<u>Well</u>	Depth	<u>Comments</u>	
1349	MW-4	60.13	Flow South 4 GPM Meter 0414064,43	
1346	TW4-15	78.99	Meter 0414064.43 Flow 5.4 СРМ	
			Meter 51642.0	
1505	TW4-19	63.40	Flow 8,26PM Meter 14255	, Þ• ⊾ S
1342	TW4-20	69.15	Flow 10.4 GPM Meter 0165715.81	
1353	TW4-4	69.11	Flow (CP) 8.5 GPM Meter 333625,4	
	Water:	327452		

Date 3-21-2011

 \bigcirc

(

Name Tanner Holliday

<u>Time</u>	<u>Well</u>	<u>Depth</u>	<u>Comments</u>
1018	<u>MW-4</u>	70.05	Flow 4.8 GPM
			Meter 420435.31
	TW4-15	Snagged @ 81.20	Flow 5.8 GPM
1014			Meter 52089.48
1035	TW4-19	63.70	Flow 7.3 GPM
			Meter 1442046.35
1010	TW4-20	68.84	Flow 10 GPM
			Meter 170400.64
1003	TW4-4	68.88	Flow 9.0 GPM
1022		68.80	Meter 339769.75
,	3		
	Water:	337963	

Date 3-28-11

 \bigcirc

 \bigcap

 \bigcirc

Name Tanner Holliday

<u>Time</u>	<u>Well</u>	<u>Depth</u>	Comments
12.14	MW-4	70.72	Flow 4.3 GPM
			Meter 427128.31
1210	TW4-15	74.41	Flow 5.4 GPM
			Meter 52547.0
1251	TW4-19	86.59	Flow 6.5 GPM
1201		26.34	Meter 1509682.46
1205	TW4-20	82.71	Flow 10.1 GPM
			Meter 1752,63.06
1217	TW4-4	70.95	Flow 8.6. GPM
			Meter 346273.6
	Water:	356774	

Chloroform Wells

Date 3-28-11

 \bigcirc

 \bigcirc

* *

 \bigcirc

Name Garrin Palmer Tanner Hollidary

	•		
<u>Time</u>	<u>Well</u>	<u>Depth</u>	<u>Comments</u>
1224	MW-4	70 72	·····
1218	TW4-1	63.85	
223	TW4-2	67.02	
1214	TW4-3	49.20	
1225	TW4-4	70.95	
1210	TW4-5	56.80	
1226	TW4-6	70.42	
1221	TW4-7	67.11	
1216	TW4-8	66.52	
1212	TW4-9	54.61	
1208	TW4-10	56.74	
1239	TW4-11	57.72	
1234	TW4-12	39.24	
1231	TW4-13	46.13	
1228	TW4-14	87.75	
1213	TW4-15	74.4	
1235	TW4-16	64.32	
1232	TW4-17	76.05	
1248	TW4-18	57.44	
1257	TW4-19	86.59	
	TW4-20	82.71	
1246	TW4-21	59.65	
1206	TW4-22	54.11	
1229 Harden	TW4-23	65.42	
12:04	TW4-24	55.50	••••••••••••••••••••••••••••••••••••••
17.93	TW4-25	76.41	
1240	TW4-26	64.13	

Date 4-04-11

 \bigcap

,

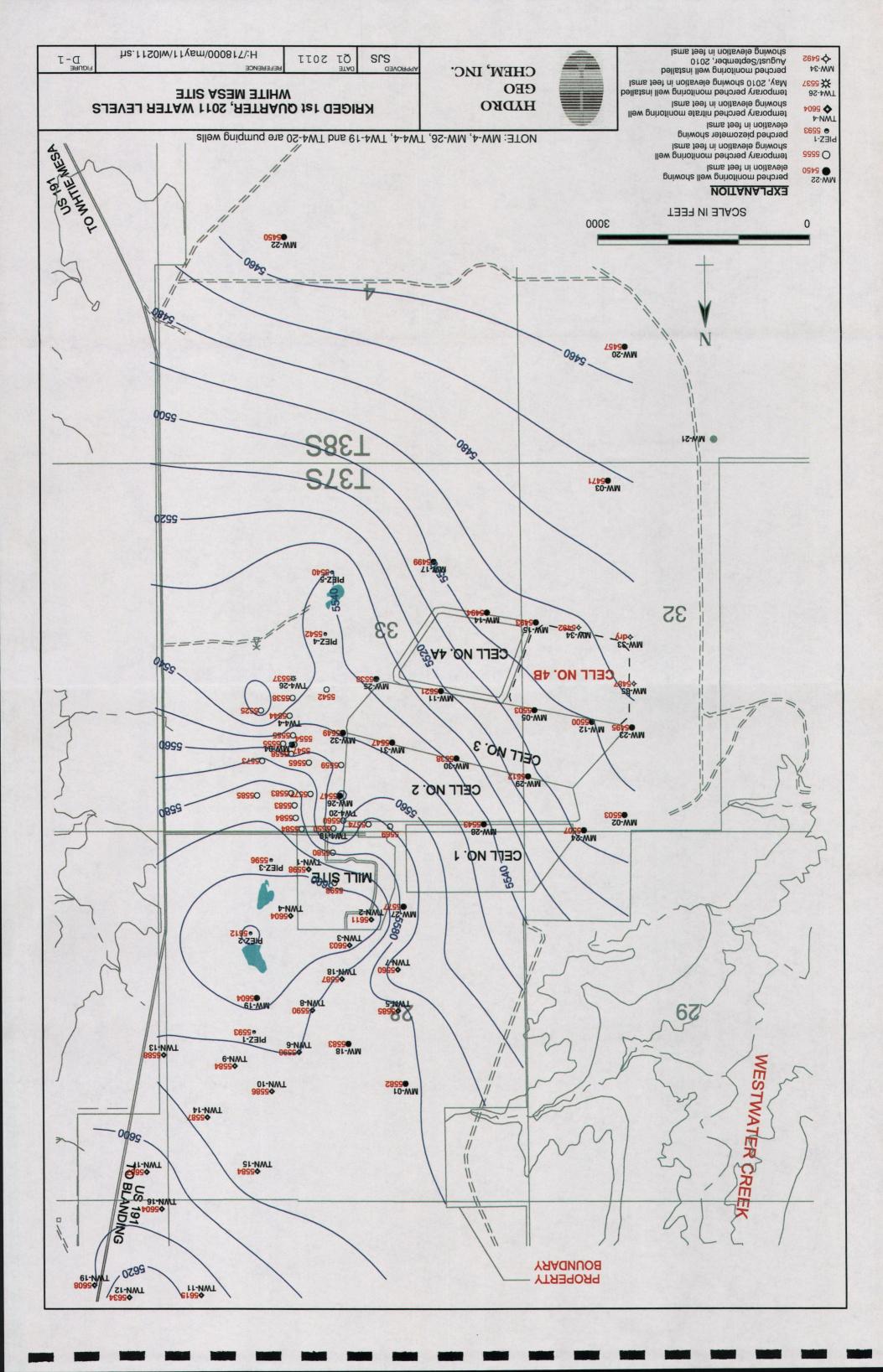
Name Tanner & Ryan S

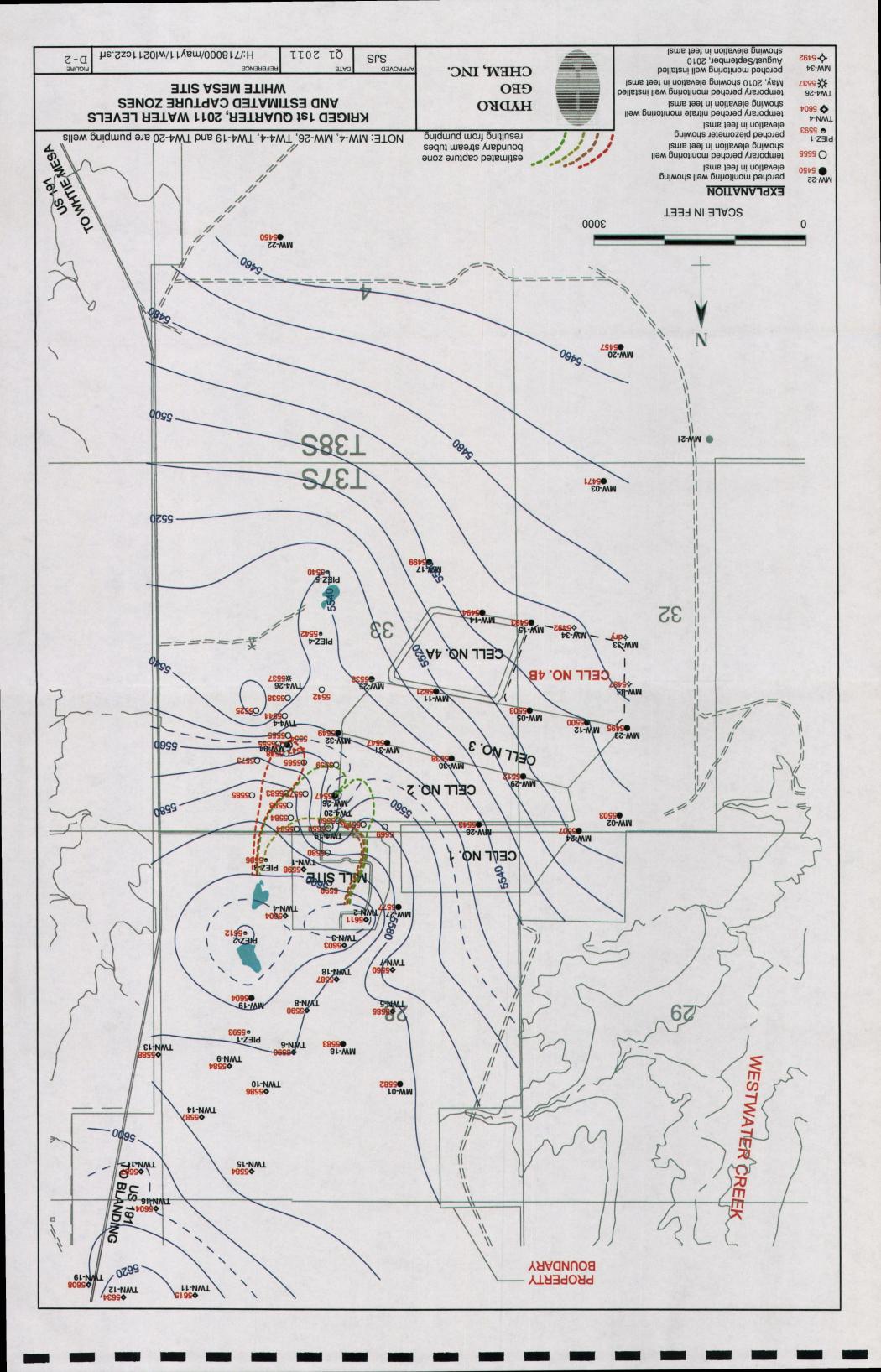
<u>Time</u>	<u>Well</u>	<u>Depth</u>	Comments	
0840	MW-4	72.15	Flow 4.3 GPM	
			Meter 433579.21	-
0836	TW4-15	7539	Flow 5.4 GPM	
			Meter sages	
			629930.0	_
0825	TW4-19	82.14	Flow 6.8 Gallons PM	-
				Al met
			1537236.3	Horsusmade.
0830	TW4-20	101.31	Flow 10.1 GPM	Swinowment
			Meter 179751,27	Adgustment Was Made. Environmound Start was All
				MARCH AND AND
0843	TW4-4	68.81	Flow 8.7 GPM	5.9 2011 00
			Meter 351830.5	S.9 2011 to Eusure Reporting is Dave the
				Same #5 Should Coordine Beter peny Frow Ard.
				Should Coordine
	_			Beter pery
				Frenned.
<u> </u>				
				-} ■
	Water:	37/687		

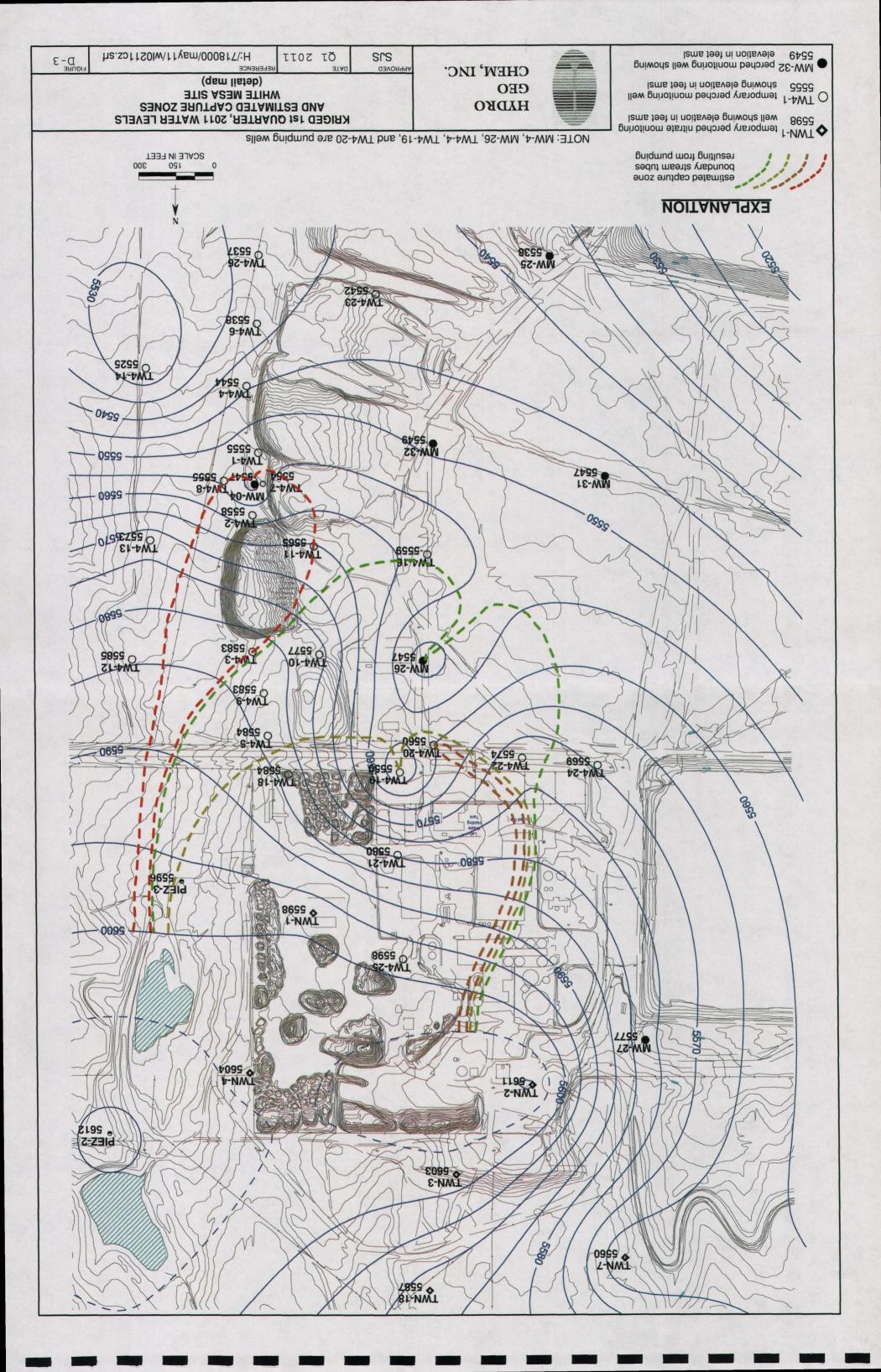
Tab D

Kriged Current Quarter Groundwater Contour Map, Details Map, and Depth to Water Summary

΄.

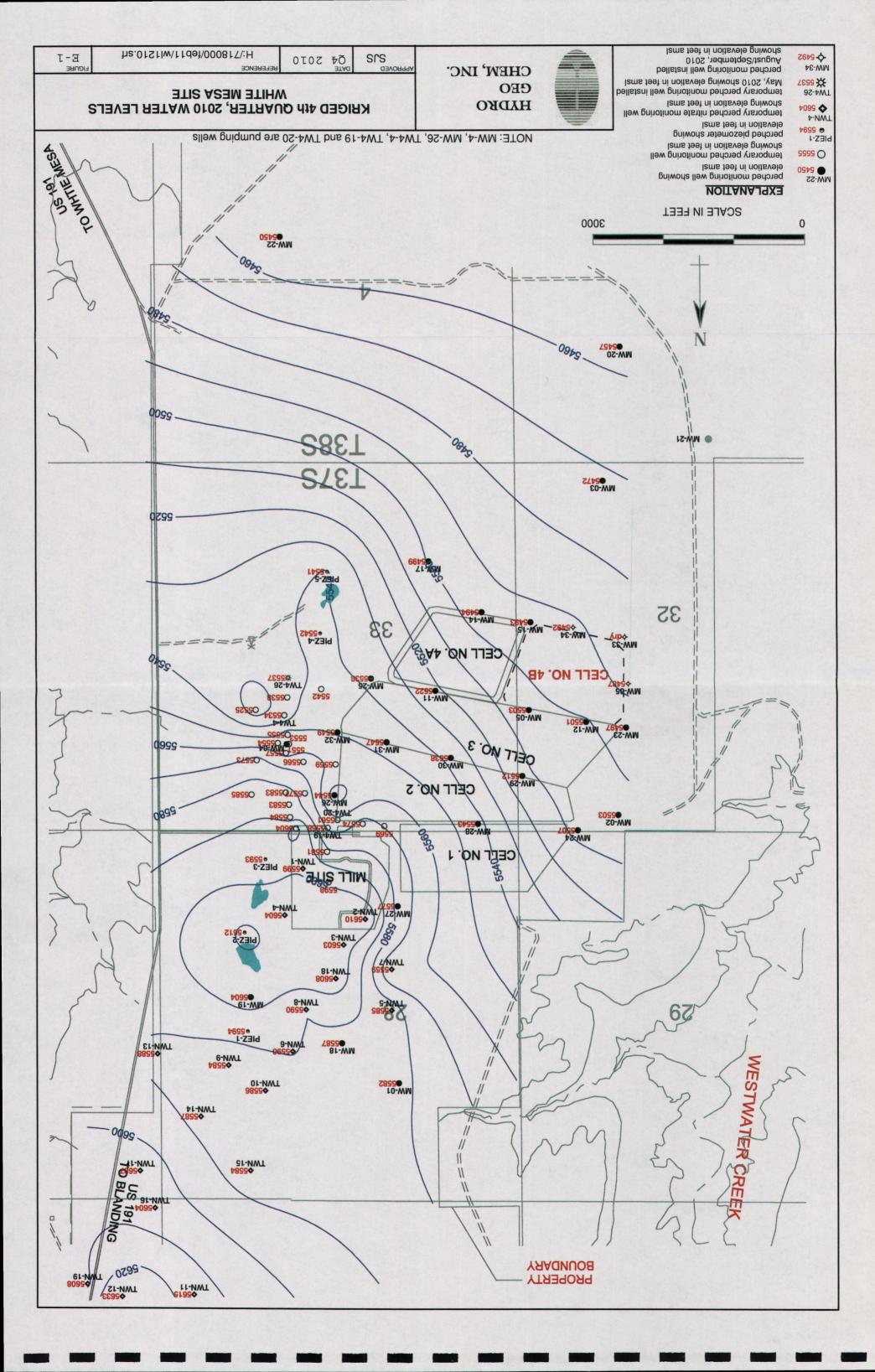

Quarterly Depth to Water


NAME: Garrin Palmer, Ryan Scheirman DATE: 2/28/2011


TIME	WELL	Static level	TIME	WELL	Static Level	TIME	WELL	Static Level
1458	MW-1	65.29	1004	MW-4	75.33	1447	PIEZ-1	62.04
839	MW-2	109.93	1001	TW4-1	63.84	1500	PIEZ-2	17.20
942	MW-3	83.50	1007	TW4-2	67.11	1503	PIEZ-3	41.96
943	MW-3A	85.55	900	TW4-3	49.63	932	PIEZ-4	48.92
912	MW-5	106.09	1258	TW4-4	69.05	934	PIEZ-5	43.91
909	MW-11	89.37	1012	TW4-5	57.15			
915	MW-12	108.76	956	TW4-6	70.80	1513	TWN-1	49.80
859	MW-14	104.00	1005	TW4-7	67.14	1000	TWN-2	16.05
857	MW-15	106.75	932	TW4-8	66.90	1005	TWN-3	31.61
939	MW-17	76.04	1010	TW4-9	54.96	1406	TWN-4	38.18
1456	MW-18	74.90	1015	TW4-10	57.10	1523	TWN-5	70.10
1452	MW-19	51.30	1016	TW4-11	58.20	1039	TWN-6	74.78
1432	MW-20	83.97	906	TW4-12	39.58	1518	TWN-7	89.58
1438	MW-22	67.32	909	TW4-13	46.84	1021	TWN-8	61.81
842	MW-23	117.43	912	TW4-14	87.99	1245	TWN-9	63.91
829	MW-24	114.81	1252	TW4-15	78.68	1250	TWN-10	81.38
903	MW-25	74.91	1020	TW4-16	64.76	1422	TWN-11	69.57
1252	MW-26	78.68	934	TW4-17	76.56	1418	TWN-12	33.89
826	MW-27	51.09	1522	T W4-18	57.72	1302	TWN-13	46.68
834	MW-28	77.29	1320	TW4-19	81.03	1311	TWN-14	62.79
921	MW-29	102.58	1248	TW4-20	69.35	1254	TWN-15	92.45
922	MW-30	76.83	1524	TW4-21	59.82	1407	TWN-16	48.50
926	MW-31	69.03	1026	TW4-22	54.51	1400	TWN-17	34.59
934	MW-32	76.56	928	TW4-23	65.83	1012	TWN-18	58.10
848	MW-33	Dry	1024	TW4-24	56.05	1431	TWN-19	52.87
853	MW-34	108.20	925	TW4-25	46.73			
846	MW-35	112.67	952	TW4-26	64.52			

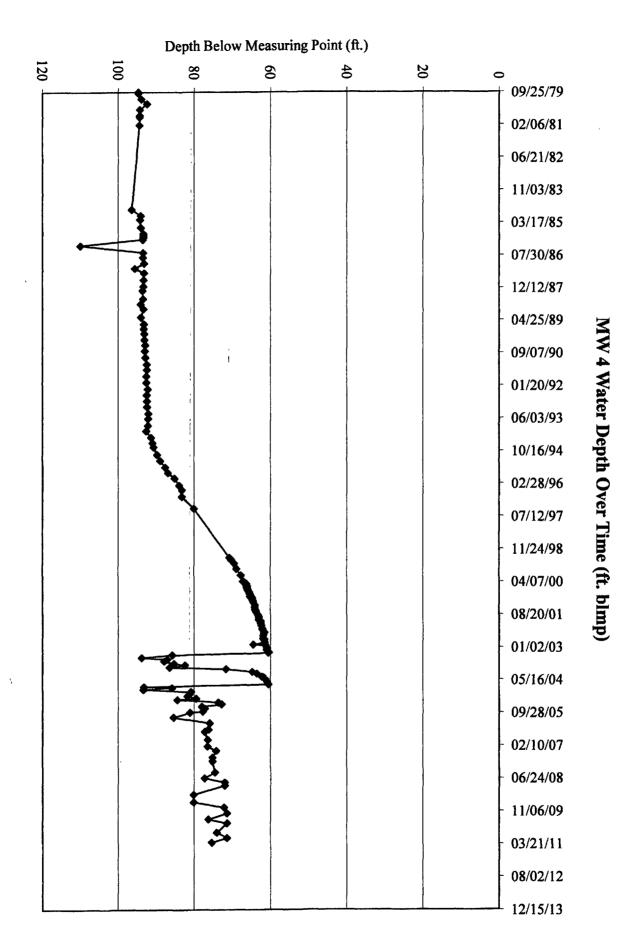
Comments:

All depths were checked.



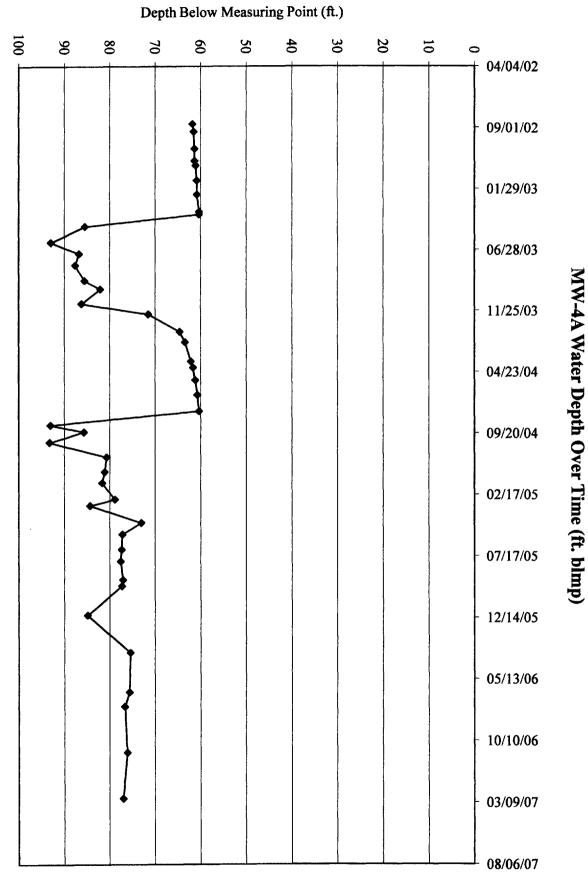
Tab E

Kriged Previous Quarter Groundwater Contour Map

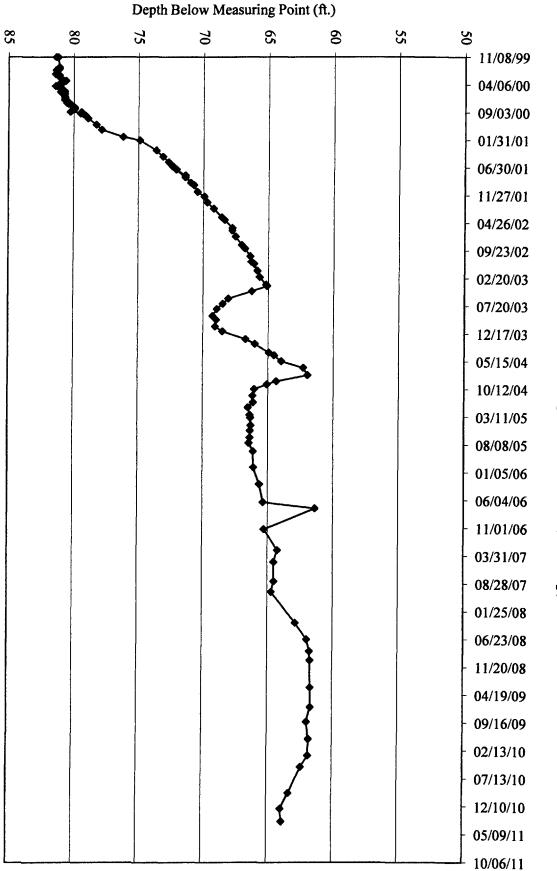

Tab F

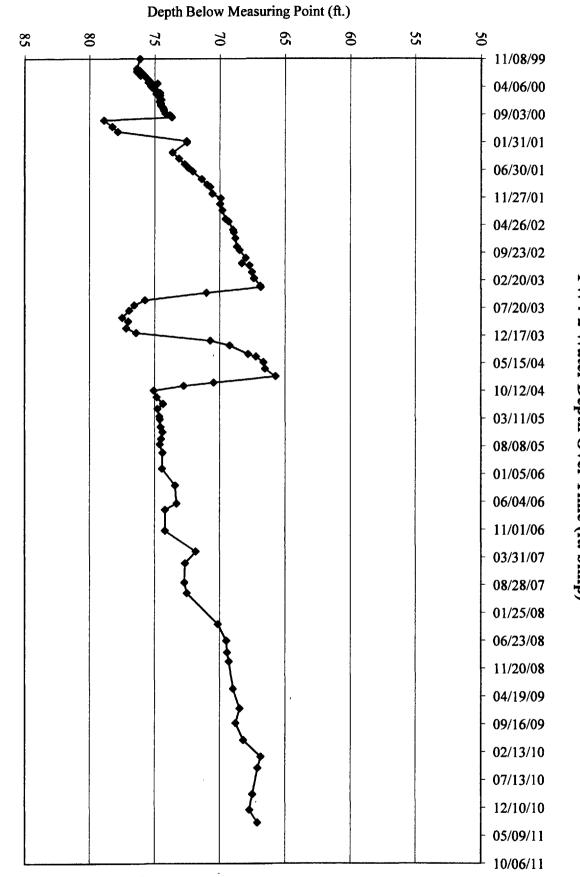
1

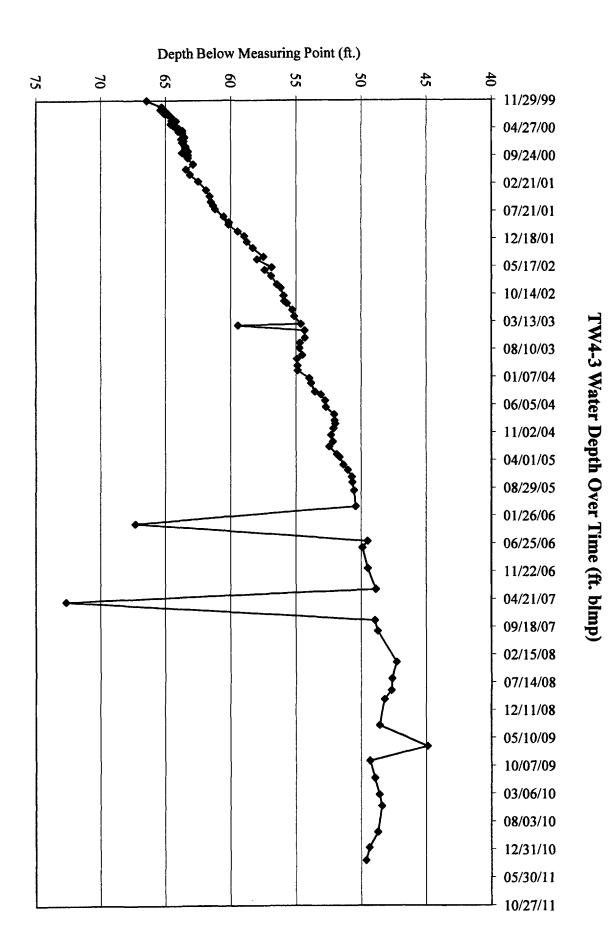
j'i

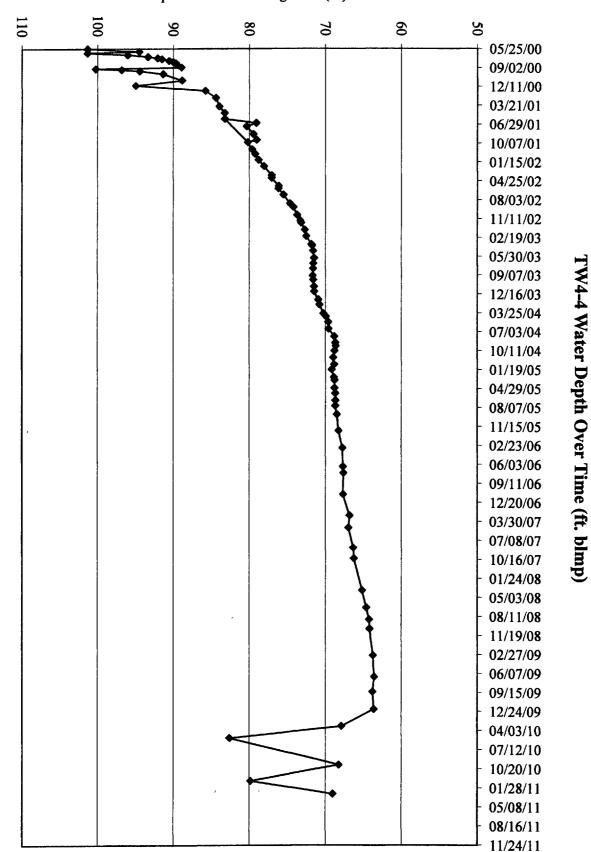

.

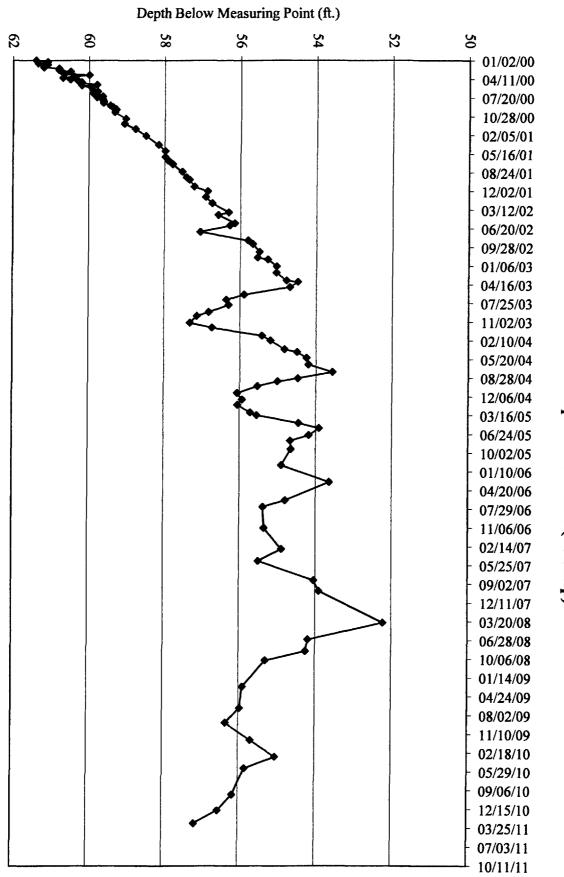
Hydrographs of Groundwater Elevations Over Time for Chloroform Monitoring Wells



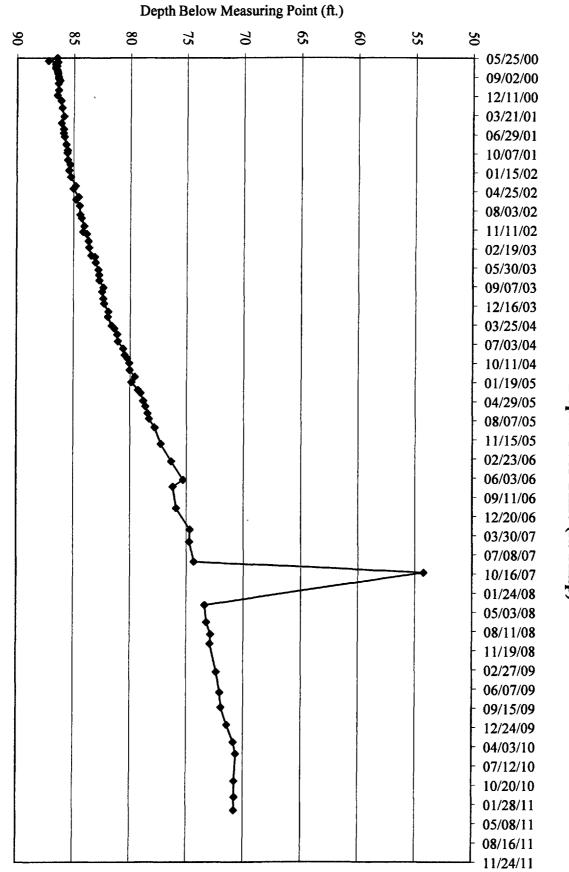


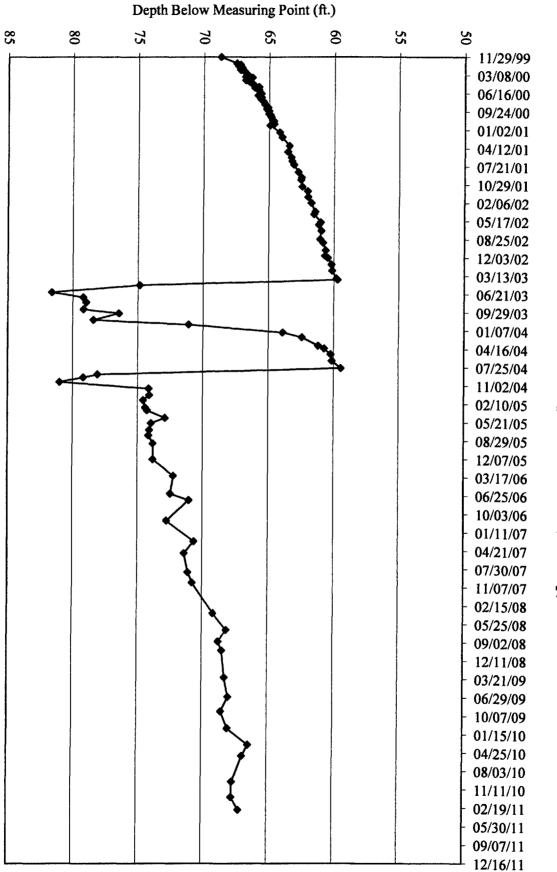

(ft. hlmp)

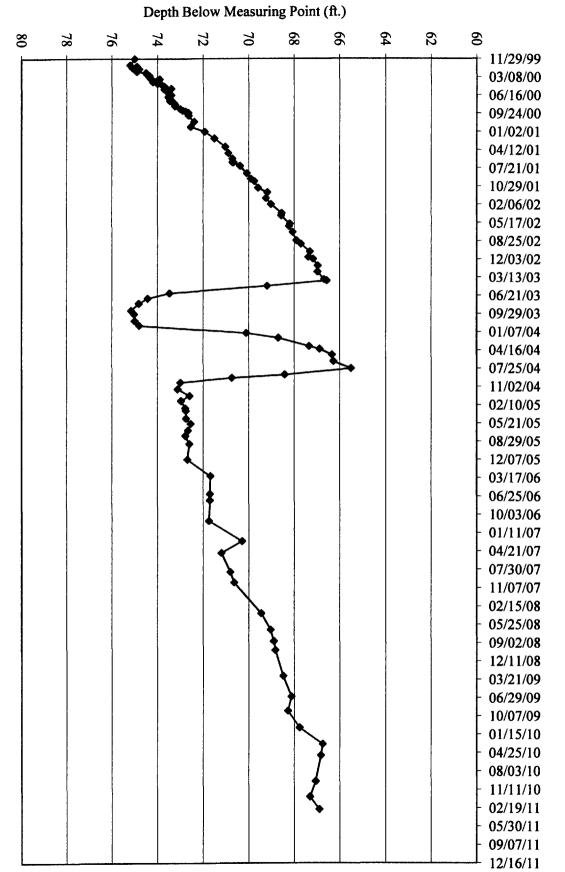


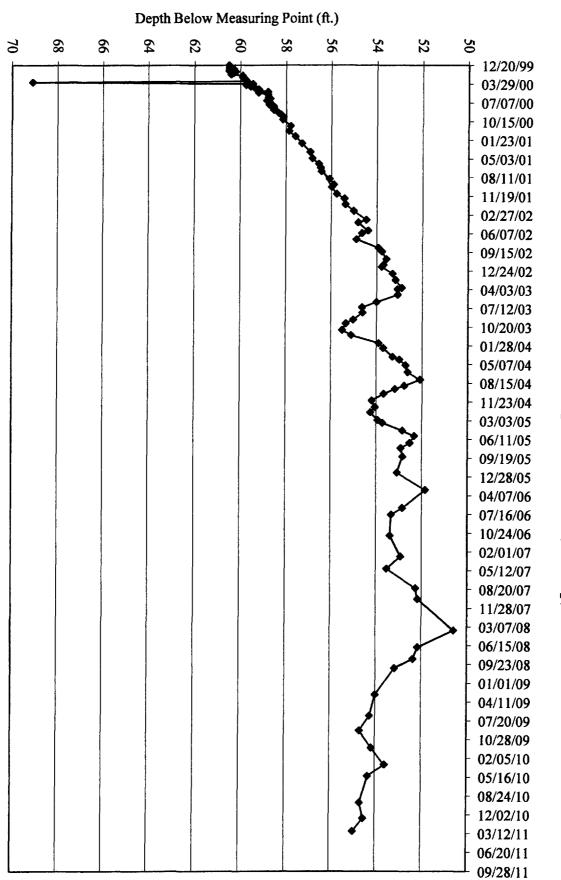


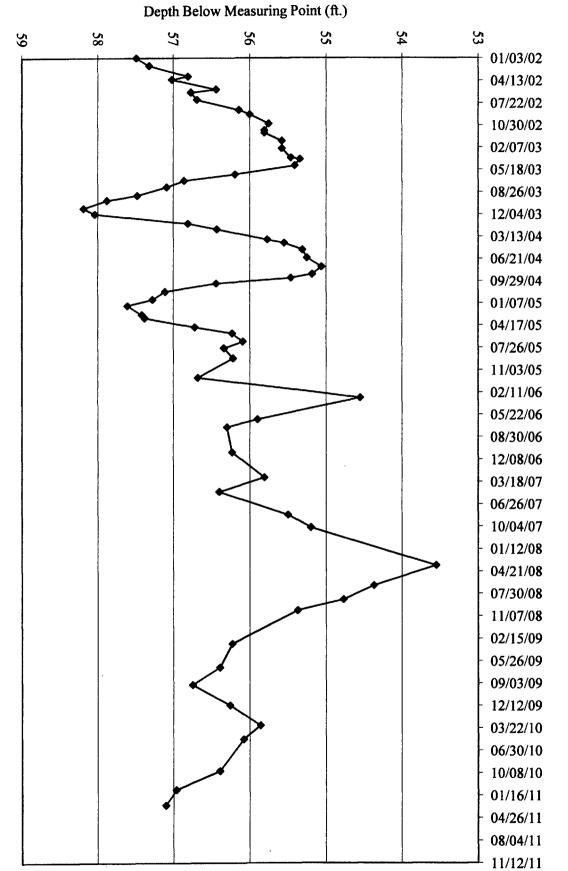
TW4-2 Water Depth Over Time (ft. blmp)

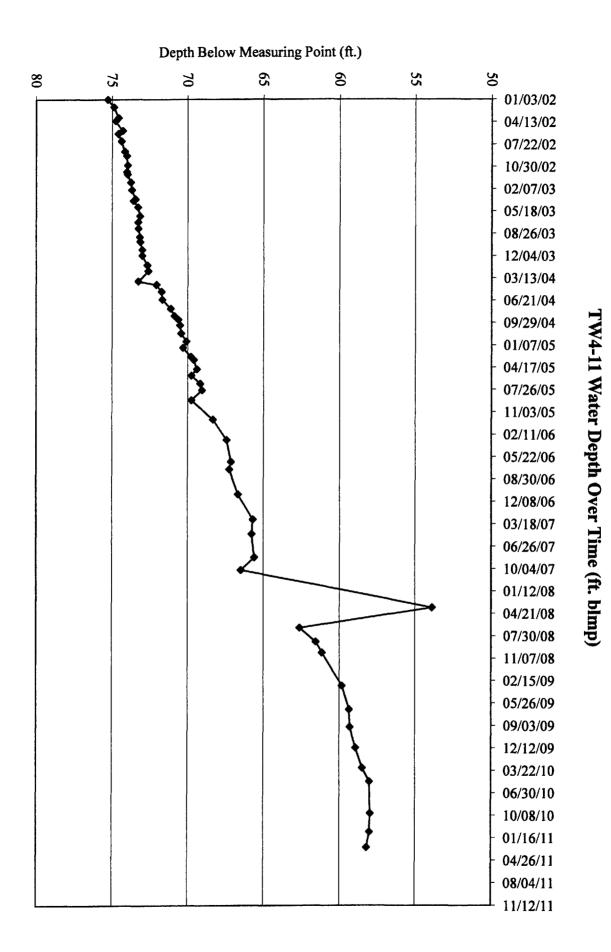


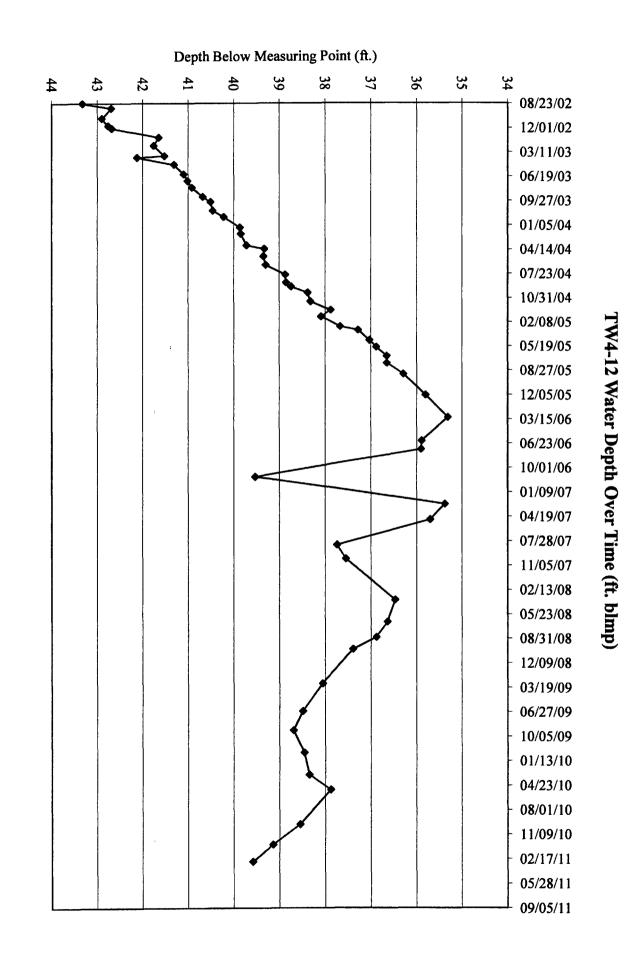

Depth Below Measuring Point (ft.)

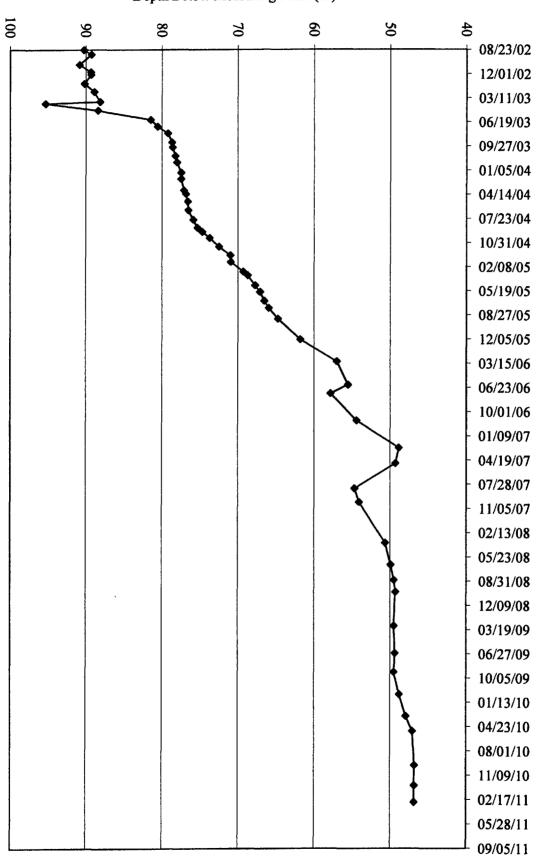

TW4-5 Water Depth Over Time (ft. blmp)

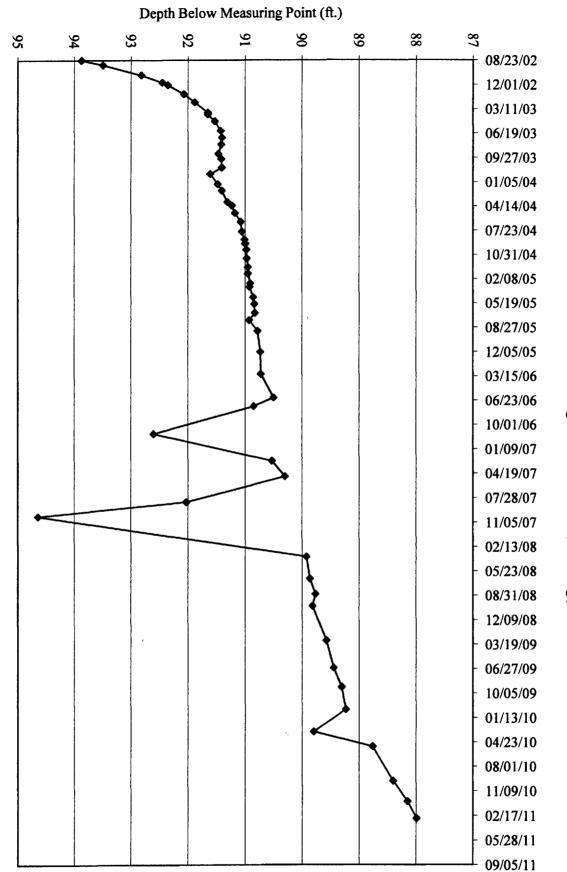

TW4-6 Water Depth Over Time (ft. blmp)

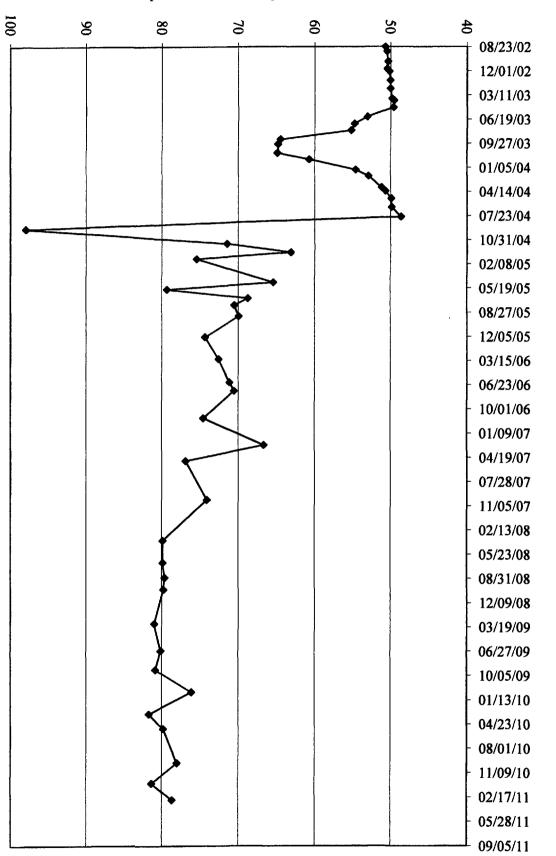

TW4-7 Water Depth Over Time (ft. blmp)





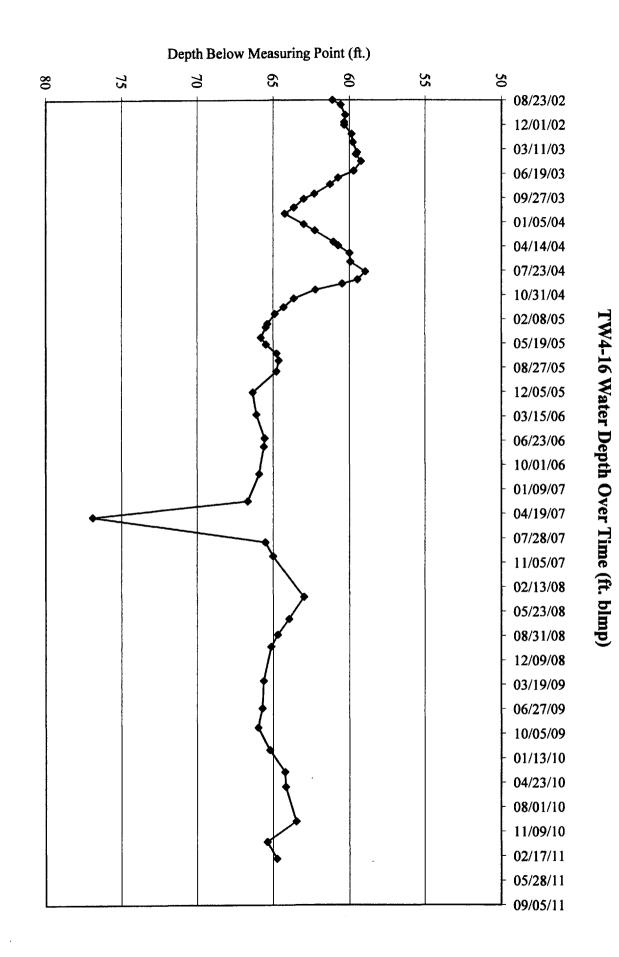

TW4-9 Water Depth Over Time (ft. blmp)

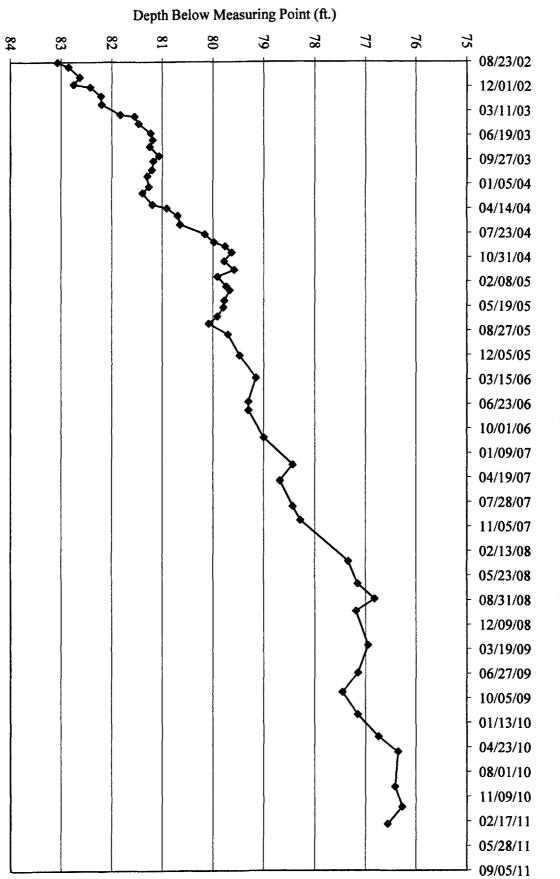


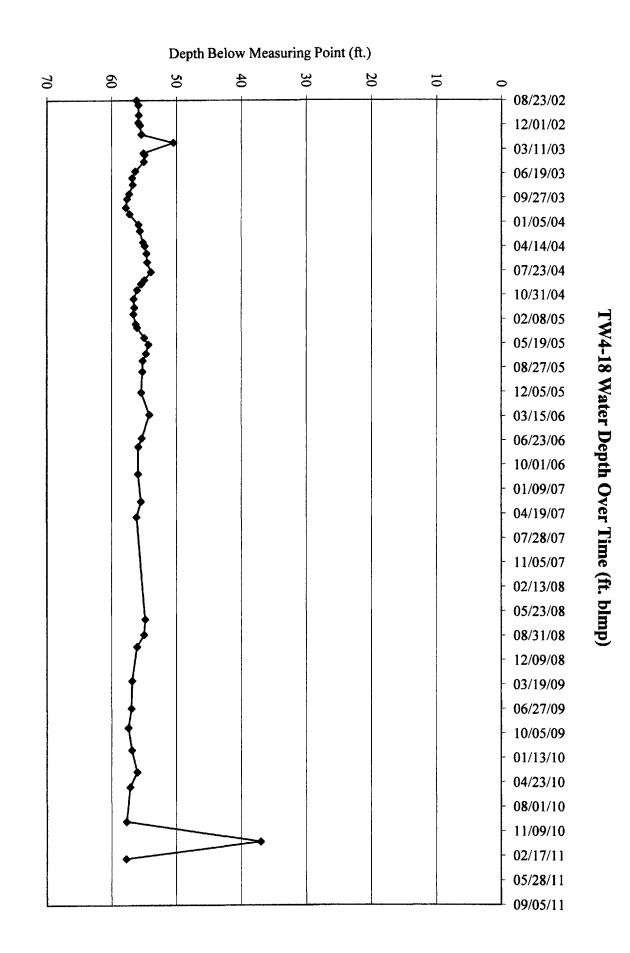


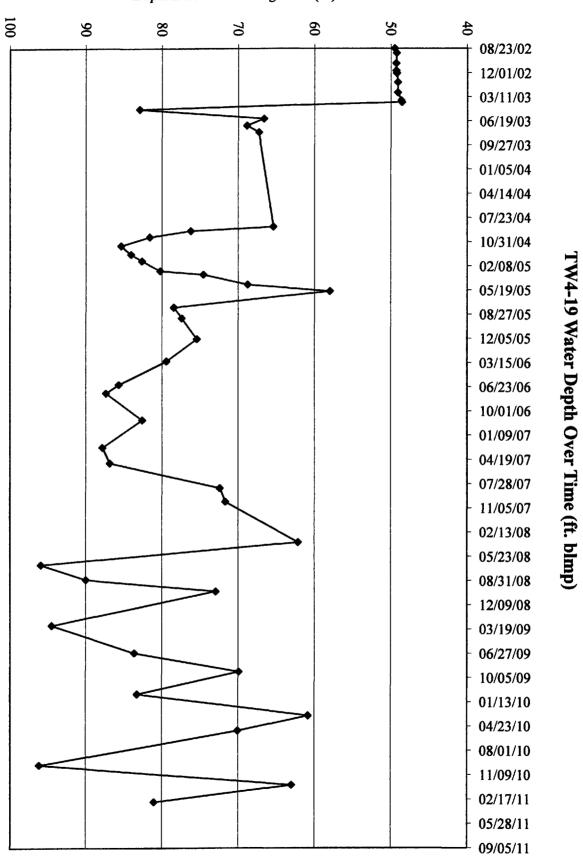
TW4-13 Water Depth Over Time (ft. blmp)

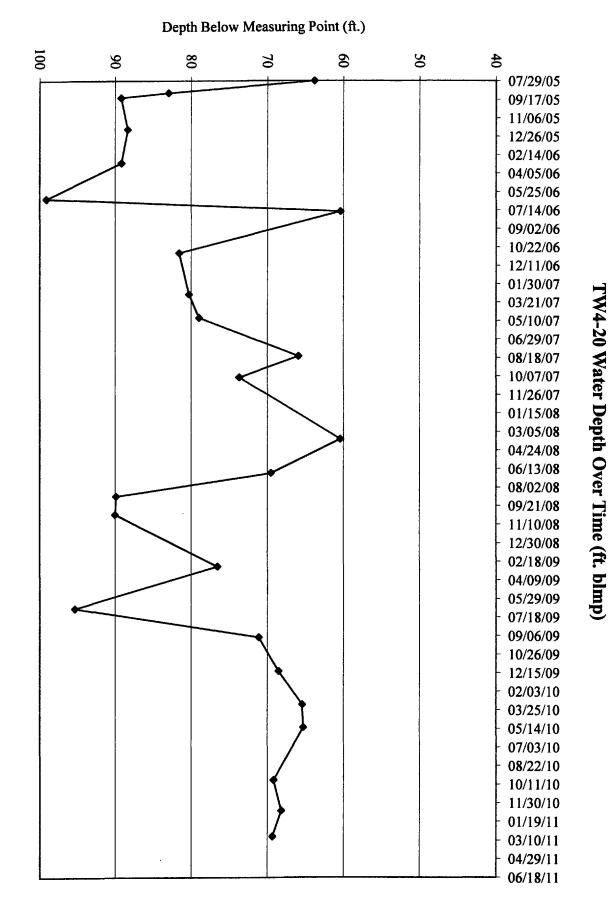
Depth Below Measuring Point (ft.)

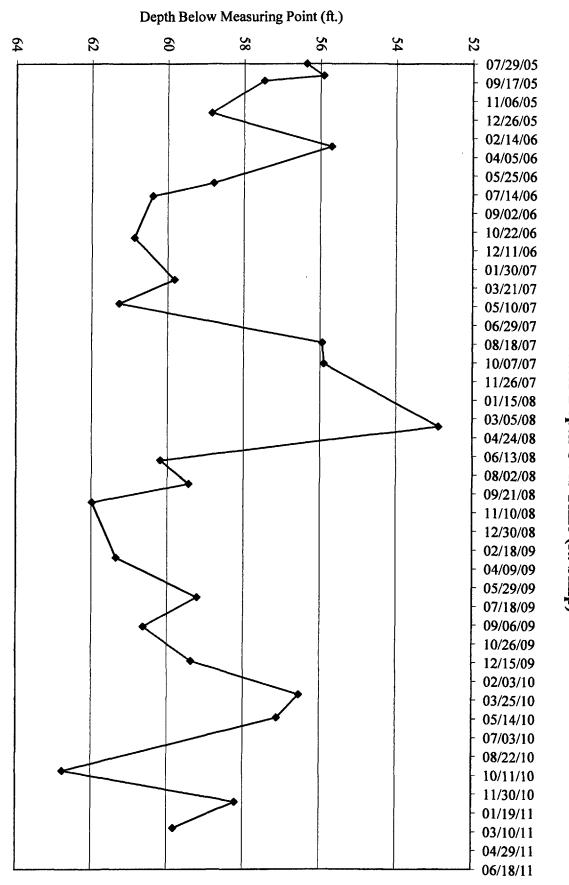


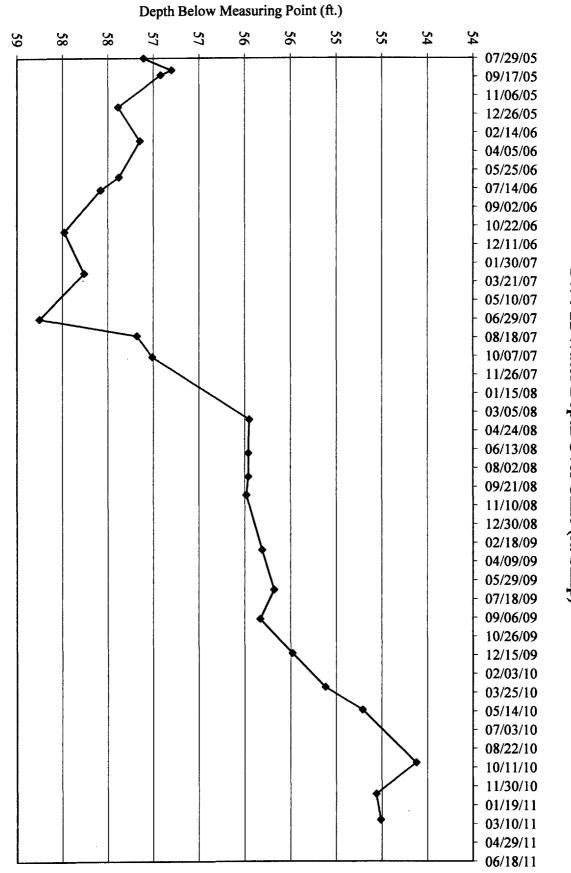

TW4-14 Water Depth Over Time (ft. blmp)


MW-26 Water Depth Over Time (ft. blmp)

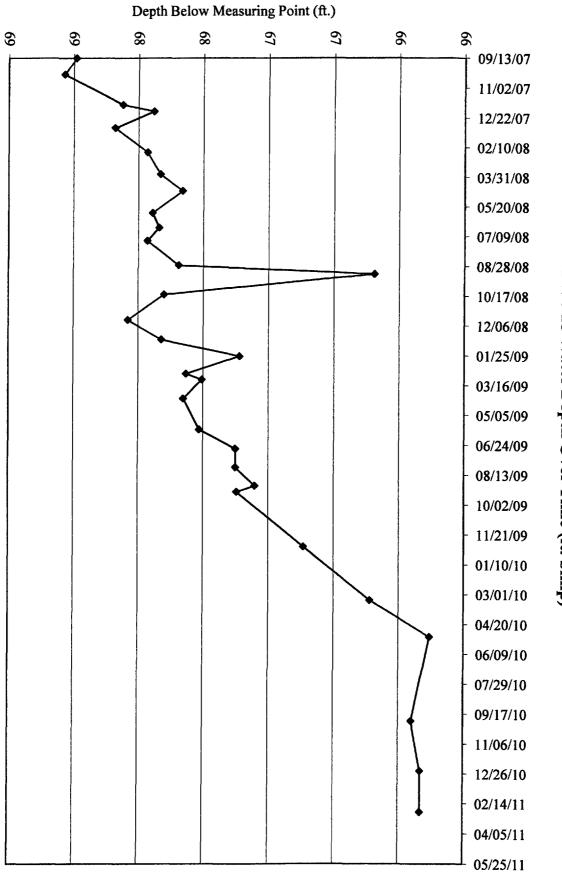

Depth Below Measuring Point (ft.)

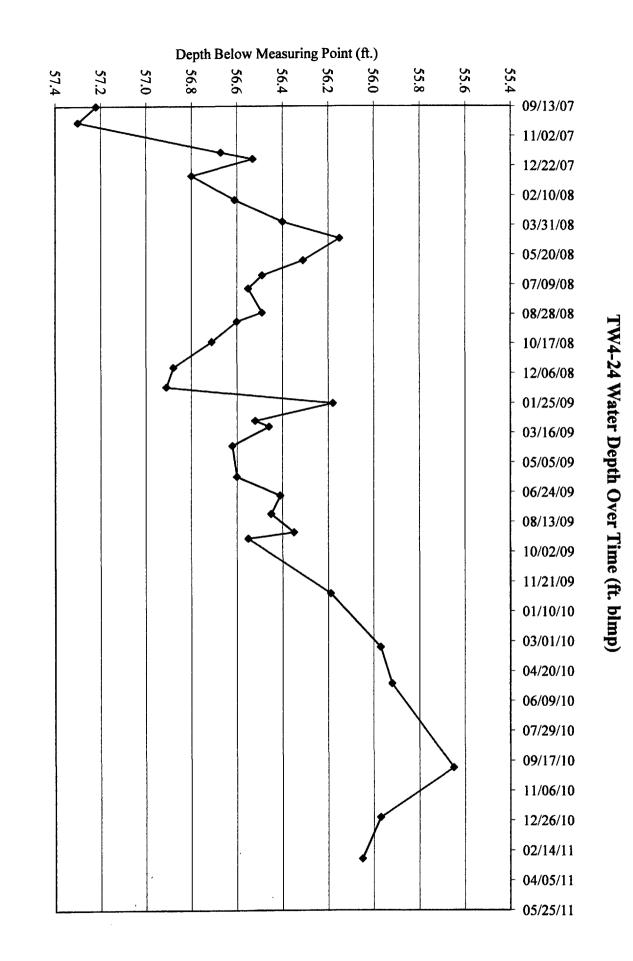


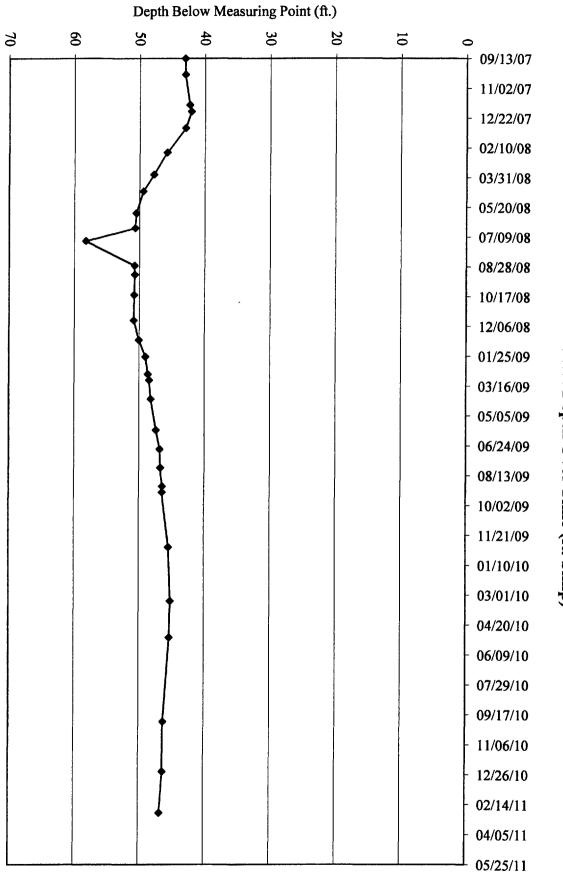




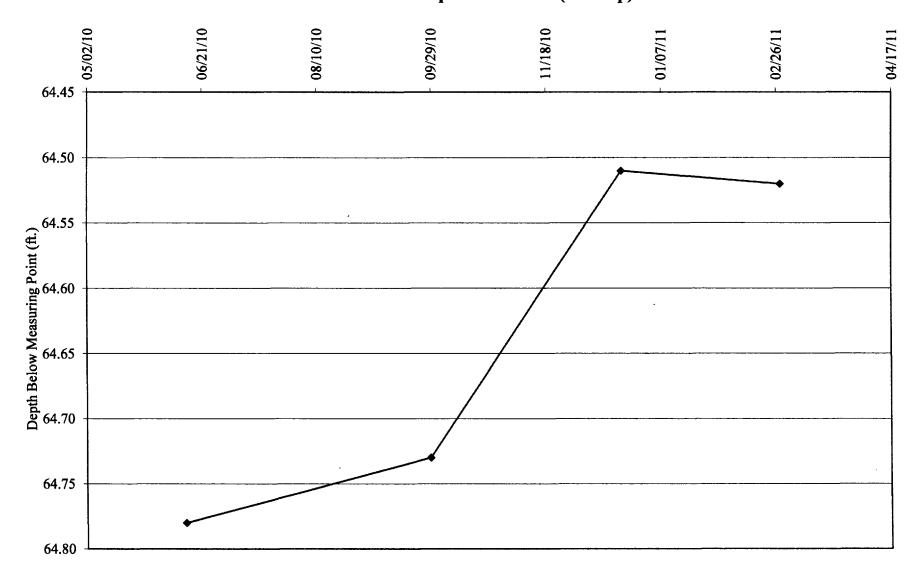
Depth Below Measuring Point (ft.)




TW4-21 Water Depth Over Time (ft. blmp)



TW4-22 Water Depth Over Time (ft. blmp)


TW4-23 Water Depth Over Time (ft. blmp)

TW4-25 Water Depth Over Time (ft. blmp)

TW4-26 Water Depth Over Time (ft. blmp)

Tab G

Depths to Groundwater and Elevations Over Time for Chloroform Monitoring Wells

.

. .

				ші - vv сп імі			
		N <i>G</i>			Total or	T -4-1	
XX 7 - 4 -	. .	Measuring			Measured	Total	T ()
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	<u>(MP)</u>	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,620.77	5,622.33	1.56				123.6
5,527.63				09/25/79	94.70	93.14	
5,527.63				10/10/79	94.70	93.14	
5,528.43				01/10/80	93.90	92.34	
5,529.93				03/20/80	92.40	90.84	
5,528.03				06/17/80	94.30	92.74	
5,528.03				09/15/80	94.30	92.74	
5,527.93				10/08/80	94.40	92.84	
5,527.93				02/12/81	94.40	92.84	
5,525.93				09/01/84	96.40	94.84	
5,528.33				12/01/84	94.00	92.44	
5,528.13				02/01/85	94.20	92.64	
5,528.33				06/01/85	94.00	92.44	
5,528.93				09/01/85	93.40	91.84	
5,528.93				10/01/85	93.40	91.84	
5,528.93				11/01/85	93.40	91.84	
5,528.83				12/01/85	93.50	91.94	
5,512.33				03/01/86	110.00	108.44	
5,528.91				06/19/86	93.42	91.86	
5,528.83				09/01/86	93.50	91.94	
5,529.16				12/01/86	93.17	91.61	
5,526.66				02/20/87	95.67	94.11	
5,529.16				04/28/87	93.17	91.61	
5,529.08				08/14/87	93.25	91.69	
5,529.00				11/20/87	93.33	91.77	
5,528.75				01/26/88	93.58	92.02	
5,528.91				06/01/88	93.42	91.86	
5,528.25				08/23/88	94.08	92.52	
5,529.00				11/02/88	93.33	91.77	
5,528.33				03/09/89	94.00	92.44	
5,529.10				06/21/89	93.23	91.67	
5,529.06				09/01/89	93.27	91.71	
5,529.21				11/15/89	93.12	91.56	
5,529.22				02/16/90	93.11	91.55	
5,529.43				05/08/90	92.90	91.34	
5,529.40				08/07/90	92.93	91.37	
5,529.53				11/13/90	92.95	91.37 91.24	
5,529.86				02/27/91	92.80 92.47	90.91	
5,529.91				02/27/91	92.47 92.42	90.91 90.86	
5,529.91				03/21/91	92.42 92.56	90.80 91.00	
5,529.77				12/03/91	92.36 92.54	90.98	
5,530.13					92.34 92.20	90.98 90.64	
5,529.85				03/17/92			
5,529.85 5,529.90				06/11/92	92.48	90.92	
3,323.90				09/13/92	92.43	90.87	

white Mesa Milli - well Mw4									
					Total or				
		Measuring			Measured	Total			
Water	Land	Point			Depth to	Depth to	Total		
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of		
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well		
	5,620.77	5,622.33	1.56	-			123.6		
5,529.92				12/09/92	92.41	90.85			
5,530.25				03/24/93	92.08	90.52			
5,530.20				06/08/93	92.13	90.57			
5,530.19				09/22/93	92.14	90.58			
5,529.75				12/14/93	92.58	91.02			
5,530.98				03/24/94	91.35	89.79			
5,531.35				06/15/94	90.98	89.42			
5,531.62				08/18/94	90.71	89.15			
5,532.58				12/13/94	89.75	88.19			
5,533.42				03/16/95	88.91	87.35			
5,534.70				06/27/95	87.63	86.07			
5,535.44				09/20/95	86.89	85.33			
5,537.16				12/11/95	85.17	83.61			
5,538.37				03/28/96	83.96	82.40			
5,539.10				06/07/96	83.23	81.67			
5,539.13				09/16/96	83.20	81.64			
5,542.29				03/20/97	80.04	78.48			
5,551.58				04/07/99	70.75	69.19			
5,552.08				05/11/99	70.25	68.69			
5,552.83				07/06/99	69.50	67.94			
5,553.47				09/28/99	68.86	67.30			
5,554.63				01/03/00	67.70	66.14			
5,555.13				04/04/00	67.20	65.64			
5,555.73				05/02/00	66.60	65.04			
5,556.03				05/11/00	66.30	64.74			
5,555.73				05/15/00	66.60	65.04			
5,555.98				05/25/00	66.35	64.79			
5,556.05				06/09/00	66.28	64.72			
5,556.18				06/16/00	66.15	64.59			
5,556.05				06/26/00	66.28	64.72			
5,556.15				07/06/00	66.18	64.62			
5,556.18				07/13/00	66.15	64.59			
5,556.17				07/18/00	66.16	64.60			
5,556.26				07/25/00	66.07	64.51			
5,556.35				08/02/00	65.98	64.42			
5,556.38				08/09/00	65.95	64.39			
5,556.39				08/15/00	65.94	64.38			
5,556.57				08/31/00	65.76	64.20			
5,556.68				09/08/00	65.65	64.09			
5,556.73				09/13/00	65.60	64.04			
5,556.82				09/20/00	65.51	63.95			
5,556.84				09/29/00	65.49	63.93			
5,556.81				10/05/00	65.52	63.96			
- , 0.0 -									

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,620.77	5,622.33	1.56		(<u></u>	123.6
5,556.89	,			10/12/00	65.44	63.88	
5,556.98				10/19/00	65.35	63.79	
5,557.01				10/23/00	65.32	63.76	
5,557.14				11/09/00	65.19	63.63	
5,557.17				11/14/00	65.16	63.60	
5,556.95				11/21/00	65.38	63.82	
5,557.08				11/30/00	65.25	63.69	
5,557.55				12/07/00	64.78	63.22	
5,557.66				01/14/01	64.67	63.11	
5,557.78				02/09/01	64.55	62.99	
5,558.28				03/29/01	64.05	62.49	
5,558.23				04/30/01	64.10	62.54	
5,558.31				05/31/01	64.02	62.46	
5,558.49				06/22/01	63.84	62.28	
5,558.66				07/10/01	63.67	62.11	
5,559.01				08/20/01	63.32	61.76	
5,559.24				09/19/01	63.09	61.53	
5,559.26				10/02/01	63.07	61.51	
5,559.27				11/08/01	63.06	61.50	
5,559.77				12/03/01	62.56	61.00	
5,559.78				01/03/02	62.55	60.99	
5,559.96				02/06/02	62.37	60.81	
5,560.16				03/26/02	62.17	60.61	
5,560.28				04/09/02	62.05	60.49	
5,560.76				05/23/02	61.57	60.01	
5,560.58				06/05/02	61.75	60.19	
5,560.43				07/08/02	61.90	60.34	
5,560.44				08/23/02	61.89	60.33	
5,560.71				09/11/02	61.62	60.06	
5,560.89				10/23/02	61.44	59.88	
5,557.86				11/22/02	64.47	62.91	
5,561.10				12/03/02	61.23	59.67	
5,561.39				01/09/03	60.94	59.38	
5,561.41				02/12/03	60.92	59.36	
5,561.93				03/26/03	60.40	58.84	
5,561.85	1			04/02/03	60.48	58.92	
5,536.62				05/01/03	85.71	84.15	
5,528.56				06/09/03	93.77	92.21	
5,535.28				07/07/03	87.05	85.49	
5,534.44				08/04/03	87.89	86.33	
5,537.10				09/11/03	85.23	83.67	
5,539.96				10/02/03	82.37	80.81	
5,535.91				11/07/03	86.42	84.86	
-							

.

Total or Measuring Measured Total	
Water Land Point Depth to Depth to	Total
	Depth Of
(WL) (LSD) (MP) Riser (L) Monitoring (blw.MP) (blw.LSD)	Well
5,620.77 5,622.33 1.56	123.6
•	
•	
•	
,	
,	
•	
,	
5,529.00 10/11/04 93.33 91.77	
5,541.55 11/16/04 80.78 79.22 5,541.12 12/22/04 81.21 70.65	
5,541.12 12/22/04 81.21 79.65 5,540.50 01/10/05 81.74 80.18	
5,540.59 01/18/05 81.74 80.18 5,542.85 02/28/05 70.48 77.02	
5,542.85 02/28/05 79.48 77.92 5,527.01 02/15/05 04.42 02.86	
5,537.91 03/15/05 84.42 82.86 5,548.67 04/95/05 73.66 73.10	
5,548.67 04/26/05 73.66 72.10	
5,549.53 05/24/05 72.80 71.24	
5,544.36 06/30/05 77.97 76.41	
5,545.16 07/29/05 77.17 75.61	
5,544.67 09/12/05 77.66 76.10	
5,541.28 09/27/05 81.05 79.49	
5,536.96 12/07/05 85.37 83.81	
5,546.49 03/08/06 75.84 74.28 5,546.15 02(12)/06 76.19 74.62	
5,546.15 06/13/06 76.18 74.62	
5,545.15 07/18/06 77.18 75.62 11/17/06 76.42 74.86	
5,545.91 11/17/06 76.42 74.86	
5,545.90 02/27/07 76.43 74.87 5,548.16 05/02/07 74.17 72.61	
5,548.16 05/02/07 74.17 72.61	
5,547.20 08/13/07 75.13 73.57 5,547.20 12/12/07 75.13 73.57	
5,547.20 10/10/07 75.13 73.57	
5,547.79 03/26/08 74.54 72.98 5,545.00 77.24 75.68	
5,545.09 06/25/08 77.24 75.68 5,550.24 70.41 70.41	
5,550.36 08/26/08 71.97 70.41 5,550.20 10/14/02 71.04 70.28	
5,550.39 10/14/08 71.94 70.38 5,550.20 22/02 20.08 78.52	
5,542.25 03/03/09 80.08 78.52 6,542.25 03/03/09 80.08 78.52	
5,542.25 06/24/09 80.08 78.52 5,550.10 00/10/00 72.14 70.58	
5,550.19 09/10/09 72.14 70.58 5,550.04 12/11/02 71.22 (0.22)	
5,550.94 12/11/09 71.39 69.83 5,550.94 22/11/10 76.25 74.60	
5,546.08 03/11/10 76.25 74.69 5,550.02 05/11/10 71.25 70.70	
5,550.98 05/11/10 71.35 69.79 5,550.92 5,550.92 5,550.92 5,550.92 5,550.92	
5,548.33 09/29/10 74.00 72.44	
5,551.01 12/21/10 71.32 69.76	

Water Elevation (WL)	Land Surface (LSD)	Measuring Point Elevation (MP)	Length Of Riser (L)	Date Of Monitoring	Total or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well
	5,620.77	5,622.33	1.56				123.6
5,547.00				02/28/11	75.33	73.77	

.

.

	White Mesa Mill - Well MW-4A									
					Total or					
		Measuring			Measured	Total				
Water	Land	Point			Depth to	Depth to	Total			
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of			
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well			
	5,620.51	5,622.31	1.80	¥_			121.33			
5,560.53				8/23/02	61.78	59.98				
5,560.76				9/11/02	61.55	59.75				
5,560.96				10/23/02	61.35	59.55				
5,561.00				11/22/02	61.31	59.51				
5,561.19				12/3/02	61.12	59.32				
5,561.46				1/9/03	60.85	59.05				
5,561.48				2/12/03	60.83	59.03				
5,561.96				3/26/03	60.35	58.55				
5,561.94				4/2/03	60.37	58.57				
5,536.88				5/1/03	85.43	83.63				
5,529.35				6/9/03	92.96	91.16				
5,535.54				7/7/03	86.77	84.97				
5,534.74				8/4/03	87.57	85.77				
5,536.74				9/11/03	85.57	83.77				
5,540.24				10/2/03	82.07	80.27				
5,536.13				11/7/03	86.18	84.38				
5,550.77				12/3/03	71.54	69.74				
5,557.67				1/15/04	64.64	62.84				
5,558.87				2/10/04	63.44	61.64				
5,560.16				3/28/04	62.15	60.35				
5,560.63				4/12/04	61.68	59.88				
5,561.14				5/13/04	61.17	59.37				
5,561.56				6/18/04	60.75	58.95				
5,561.95				7/28/04	60.36	58.56				
5,529.25				8/30/04	93.06	91.26				
5,536.63				9/16/04	85.68	83.88				
5,529.08				10/11/04	93.23	91.43				
5,541.63				11/16/04	80.68	78.88				
5,541.20				12/22/04	81.11	79.31				
5,540.67				1/18/05	81.64	79.84				
5,543.45				2/28/05	78.86	77.06				
5,537.99				3/15/05	84.32	82.52				
5,549.27				4/26/05	73.04	71.24				
5,545.08				5/24/05	77.23	75.43				
5,544.94				6/30/05	77.37	75.57				
5,544.71				7/29/05	77.60	75.80				
5,545.23				9/12/05	77.08	75.28				
5,545.00				9/27/05	77.31	75.51				
5,537.45				12/7/05	84.86	83.06				
5,546.86				3/8/06	75.45	73.65				
5,546.66				6/13/06	75.65	73.85				
5,545.63				7/18/06	76.68	74.88				
5,546.18				11/7/06	76.13	74.33				
5,570.10				11///00	70.15					

Water Elevation (WL)	Land Surface (LSD)	Measuring Point	Length Of Riser (L)	Date Of Monitoring	Total or Measured Depth to Water	Total Depth to Water (blw.LSD)	Total Depth Of Well
	5,620.51	5,622.31	1.80		_`ź		121.33
5,545.30				2/27/07	77.01	75.21	

		White	e iviesa ivili	I - wei I v			
					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(biw.LSD)	Well
Z	5,620.77	5,622.33	1.02			_	111.04
5,540.98	-	•		11/08/99	81.35	80.33	
5,541.13				11/09/99	81.20	80.18	
5,541.23				01/02/00	81.10	80.08	
5,541.23				01/10/00	81.10	80.08	
5,540.98				01/17/00	81.35	80.33	
5,541.03				01/24/00	81.30	80.28	
5,541.03				02/01/00	81.30	80.28	
5,540.93				02/07/00	81.40	80.38	
5,541.23				02/14/00	81.10	80.08	
5,541.23				02/23/00	81.10	80.08	
5,541.33				03/01/00	81.00	79.98	
5,541.43				03/08/00	80.90	79.88	
5,541.73				03/15/00	80.60	79.58	
5,541.43				03/20/00	80.90	79.88	
5,541.43				03/29/00	80.90	79.88	
5,541.18				04/04/00	81.15	80.13	
5,540.93				04/13/00	81.40	80.38	
5,541.23				04/21/00	81.10	80.08	
5,541.43				04/28/00	80.90	79.88	
5,541.33				05/01/00	81.00	79.98	
5,541.63				05/11/00	80.70	79.68	
5,541.33				05/15/00	81.00	79.98	
5,541.63				05/25/00	80.70	79.68	
5,541.63				06/09/00	80.70	79.68	
5,541.65				06/16/00	80.68	79.66	
5,541.63				06/26/00	80.70	79.68	
5,541.85				07/06/00	80.48	79.46	
5,541.79				07/13/00	80.54	79.52	
5,541.91				07/18/00	80.42	79.40	
5,542.17				07/27/00	80.16	79.14	
5,542.31				08/02/00	80.02	79.00	
5,542.43				08/09/00	79.90	78.88	
5,542.41				08/15/00	79.92	78.90	
5,542.08				08/31/00	80.25	79.23	
5,542.93				09/01/00	79.40	78.38	
5,542.87				09/08/00	79.46	78.44	
5,543.09				09/13/00	79.24	78.22	
5,543.25				09/20/00	79.08	78.06	
5,543.44				10/05/00	78.89	77.87	
5,544.08				11/09/00	78.25	77.23	
5,544.49				12/06/00	77.84	76.82	
5,546.14				01/14/01	76.19	75.17	
5,547.44				02/02/01	74.89	73.87	
- ,							

		VV IIIC					
					Total or	T - 4 - 1	
		Measuring			Measured	Total	T (1
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
<u>(WL)</u>	(LSD)	<u>(MP)</u>	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
Z	5,620.77	5,622.33	1.02				111.04
5,548.71				03/29/01	73.62	72.60	
5,549.20				04/30/01	73.13	72.11	
5,549.64				05/31/01	72.69	71.67	
5,549.94				06/22/01	72.39	71.37	
5,550.25				07/10/01	72.08	71.06	
5,550.93				08/10/01	71.40	70.38	
5,551.34				09/19/01	70.99	69.97	
5,551.59				10/02/01	70.74	69.72	
5,549.64				05/31/01	72.69	71.67	
5,549.94				06/21/01	72.39	71.37	
5,550.25				07/10/01	72.08	71.06	
5,550.93				08/20/01	71.40	70.38	
5,551.34				09/19/01	70.99	69.97	
5,551.59				10/02/01	70.74	69.72	
5,551.87				11/08/01	70.46	69.44	
5,552.40				12/03/01	69.93	68.91	
5,552.62				01/03/02	69.71	68.69	
5,553.12				02/06/02	69.21	68.19	
5,553.75				03/26/02	68.58	67.56	
5,553.97				04/09/02	68.36	67.34	
5,554.56				05/23/02	67.77	66.75	
5,554.54				06/05/02	67.79	66.77	
5,554.83				07/08/02	67.50	66.48	
5,555.29				08/23/02	67.04	66.02	
5,555.54				09/11/02	66.79	65.77	
5,555.94				10/23/02	66.39	65.37	
5,556.02				11/22/02	66.31	65.29	
5,556.23				12/03/02	66.10	65.08	
5,556.49				01/09/03	65.84	64.82	
5,556.67				02/12/03	65.66	64.64	
5,557.15				03/26/03	65.18	64.16	
5,557.23				04/02/03	65.10	64.08	
5,556.07				05/01/03	66.26	65.24	
5,554.28				06/09/03	68.05	67.03	
5,553.84				07/07/03	68.49	67.47	
5,553.39				08/04/03	68.94	67.92	
5,553.06				09/11/03	69.27	68.25	
5,553.33				10/02/03	69.00	67.98	
5,553.25				11/07/03	69.08	68.06	
5,553.82				12/03/03	68.51	67.49	
5,555.61				01/15/04	66.72	65.70	
5,556.32				01/13/04 02/10/04	66.01	64.99	
5,550.52 5,557.38				02/10/04 03/28/04	64.95	63.93	
5,557.50				03/20/04	U-1.7J	62,22	

,

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Water Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
	(LSD)		Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
<u>(WL)</u> z	5,620.77	(MP) 5,622.33	1.02	Momtoring	(DIWANIX)	(DIM.LOD)	111.04
	5,020.77	5,022.55	1.02	04/12/04	64.54	63.52	
5,557.79				04/12/04 05/13/04	63.98	62.96	
5,558.35				05/15/04 06/18/04	62.30	61.28	
5,560.03				07/28/04	61.97	60.95	
5,560.36					64.37	63.35	
5,557.96				08/30/04	65.09	64.07	
5,557.24				09/16/04	66.05	65.03	
5,556.28				10/11/04	66.16	65.14	
5,556.17				11/16/04	66.10 66.12	65.10	
5,556.21				12/22/04	66.51 66.51	65.49	
5,555.82				01/18/05	66.31 66.37	65.35	
5,555.96				02/28/05		65.30	
5,556.01				03/15/05	66.32	65.26	
5,556.05				04/26/05	66.28		
5,556.00				05/24/05	66.33	65.31	
5,555.97				06/30/05	66.36	65.34	
5,555.90				07/29/05	66.43	65.41	
5,556.22				09/12/05	66.11	65.09	
5,556.25				12/07/05	66.08	65.06	
5,556.71				03/08/06	65.62	64.60	
5,556.98				06/14/06	65.35	64.33	
5,560.95				07/18/06	61.38	60.36	
5,557.07				11/07/06	65.26	64.24	
5,558.10				02/27/07	64.23	63.21	
5,557.82				05/02/07	64.51	63.49	
5,557.82				08/14/07	64.51	63.49	
5,557.63				10/10/07	64.70	63.68	
5,559.48				03/26/08	62.85	61.83	
5,560.35				06/24/08	61.98	60.96	
5,560.58				08/26/08	61.75	60.73	
5,560.62				10/14/08	61.71	60.69	
5,560.65				03/10/09	61.68	60.66	
5,560.66				06/24/09	61.67	60.65	
5,560.36				09/10/09	61.97	60.95	
5,560.53				12/11/09	61.8	60.78	
5,560.50				03/11/10	61.83	60.81	
5,559.94				05/11/10	62.39	61.37	
5,559.01				09/29/10	63.32	62.30	
5,558.41				12/21/10	63.92	62.90	
5,558.49				02/28/11	63.84	62.82	

		VV IXIC					
					Total or	m ()	
		Measuring			Measured	Total	(T) - 4 - 1
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
<u>(z)</u>	(LSD)	<u>(MP)</u>	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,623.10	5,625.00	1.90				121.125
5,548.85				11/08/99	76.15	74.25	
5,548.85				11/09/99	76.15	74.25	
5,548.60				01/02/00	76.40	74.50	
5,548.80				01/10/00	76.20	74.30	
5,548.60				01/17/00	76.40	74.50	
5,549.00				01/24/00	76.00	74.10	
5,548.90				02/01/00	76.10	74.20	
5,548.90				02/07/00	76.10	74.20	
5,549.30				02/14/00	75.70	73.80	
5,549.40				02/23/00	75.60	73.70	
5,549.50				03/01/00	75.50	73.60	
5,549.60				03/08/00	75.40	73.50	
5,549.50				03/15/00	75.50	73.60	
5,550.20				03/20/00	74.80	72.90	
5,550.00				03/29/00	75.00	73.10	
5,549.70				04/04/00	75.30	73.40	
5,549.80				04/13/00	75.20	73.30	
5,550.00				04/21/00	75.00	73.10	
5,550.10				04/28/00	74.90	73.00	
5,550.10				05/01/00	74.90	73.00	
5,550.40				05/11/00	74.60	72.70	
5,550.10				05/15/00	74.90	73.00	
5,550.40				05/25/00	74.60	72.70	
5,550.40				06/09/00	74.60	72.70	
5,550.50				06/16/00	74.50	72.60	
5,550.35				06/26/00	74.65	72.75	
5,550.45				07/06/00	74.55	72.65	
5,550.45				07/13/00	74.55	72.65	
5,550.46				07/18/00	74.54	72.64	
5,550.61				07/27/00	74.39	72.49	
5,550.66				08/02/00	74.34	72.44	
5,550.68				08/09/00	74.32	72.42	
5,550.70				08/15/00	74.30	72.40	
5,550.82				08/31/00	74.18	72.28	
5,551.15				09/08/00	73.85	71.95	
5,551.25				09/13/00	73.75	71.85	
5,551.32				09/20/00	73.68	71.78	
5,546.11				10/05/00	78.89	76.99	
5,546.75				11/09/00	78.25	76.35	
5,547.16				12/06/00	77.84	75.94	
5,552.46				01/26/01	72.54	70.64	
5,552.48				02/02/01	72.52	70.62	
5,552.48 5,551.38				02/02/01	73.62	70.02	
5,551.58				03/27/01	15.02	11.12	

ì

Water Levels and Data over Time White Mesa Mill - Well TW4-2

ł

		white	e iviesa ivii	п-wen iv			
					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(z)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,623.10	5,625.00	1.90				121.125
5,551.87				04/30/01	73.13	71.23	
5,552.31				05/31/01	72.69	70.79	
5,552.61				06/21/01	72.39	70.49	
5,552.92				07/10/01	72.08	70.18	
5,553.60				08/20/01	71.40	69.50	
5,554.01				09/19/01	70.99	69.09	
5,554.26				10/02/01	70.74	68.84	
5,554.42				11/08/01	70.58	68.68	
5,555.07				12/03/01	69.93	68.03	
5,555.02				01/03/02	69.98	68.08	
5,555.19				02/06/02	69.81	67.91	
5,555.43				03/26/02	69.57	67.67	
5,555.67				04/09/02	69.33	67.43	
5,556.01		i		05/23/02	68.99	67.09	
5,556.07				06/05/02	68.93	67.03	
5,556.19				07/08/02	68.81	66.91	
5,556.32				08/23/02	68.68	66.78	
5,556.53				09/11/02	68.47	66.57	
5,557.00				10/23/02	68.00	66.10	
5,556.70				11/22/02	68.30	66.40	
5,557.29				12/03/02	67.71	65.81	
5,557.48				01/09/03	67.52	65.62	
5,557.63				02/12/03	67.37	65.47	
5,558.11				03/26/03	66.89	64.99	
5,558.15				04/02/03	66.85	64.95	
5,553.99				05/01/03	71.01	69.11	
5,549.26				06/09/03	75.74	73.84	
5,548.42				07/07/03	76.58	74.68	
5,548.03				08/04/03	76.97	75.07	
5,547.50				09/11/03	77.50	75.60	
5,547.96				10/02/03	77.04	75.14	
5,547.80				11/07/03	77.20	75.30	
5,548.57				12/03/03	76.43	74.53	
5,554.28				01/15/04	70.72	68.82	
5,555.74				02/10/04	69.26	67.36	
5,557.18				03/28/04	67.82	65.92	
5,557.77				04/12/04	67.23	65.33	
5,558.35				05/13/04	66.65	64.75	
5,558.47				06/18/04	66.53	64.63	
5,559.28				07/28/04	65.72	63.82	
5,554.54				08/30/04	70.46	68.56	
5,552.25				09/16/04	72.75	70.85	
5,549.93				10/11/04	75.07	73.17	

Water Elevation (z)	Land Surface (LSD)	Measuring Point Elevation (MP)	Length Of Riser (L)	Date Of Monitoring	Total or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well
	5,623.10	5,625.00	1.90				121.125
5,550.17				11/16/04	74.83	72.93	
5,550.65				12/22/04	74.35	72.45	
5,550.23				01/18/05	74.77	72.87	
5,550.37				02/28/05	74.63	72.73	
5,550.41				03/15/05	74.59	72.69	
5,550.46				04/26/05	74.54	72.64	
5,550.60				05/24/05	74.40	72.50	
5,550.49				06/30/05	74.51	72.61	
5,550.39				07/29/05	74.61	72.71	
5,550.61				09/12/05	74.39	72.49	
5,550.57				12/07/05	74.43	72.53	
5,551.58				03/08/06	73.42	71.52	
5,551.70				06/14/06	73.3	71.40	
5,550.80				07/18/06	74.20	72.30	
5550.80				11/07/06	74.20	72.30	
5553.17				02/27/07	71.83	69.93	
5,552.34				05/02/07	72.66	70.76	
5,552.30				08/14/07	72.7	70.80	
5,552.48				10/10/07	72.52	70.62	
5,554.86				03/26/08	70.14	68.24	
5,555.51				06/24/08	69.49	67.59	
5,555.57				08/26/08	69.43	67.53	
5,555.71				10/14/08	69.29	67.39	
5,556.01				03/10/09	68.99	67.09	
5,556.53				06/24/09	68.47	66.57	
5,556.22				09/10/09	68.78	66.88	
5,556.81				12/11/09	68.19	66.29	
5,558.15				03/11/10	66.85	64.95	
5,557.91				05/11/10	67.09	65.19	
5,557.52				09/29/10	67.48	65.58	
5,557.28				12/21/10	67.72	65.82	
5,557.89				02/28/11	67.11	65.21	

ľ

۱.

	White Mesa Mill - Well TW4-3							
					Total or			
		Measuring			Measured	Total		
Water	Land	Point			Depth to	Depth to		
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water		
(Z)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Total Depth Of Well	
(2)	5,631.21	5,632.23	1.02	momenting	(DIVINIT)	(01111202)	141	
5 5 6 5 70	5,051.21	5,052.25	1.02	11/20/00	66.45	65.43		
5,565.78				11/29/99		64.28		
5,566.93				01/02/00	65.30			
5,567.03				01/10/00	65.20	64.18		
5,566.83				01/17/00	65.40	64.38		
5,567.13				01/24/00	65.10	64.08		
5,567.33				02/01/00	64.90	63.88		
5,567.13				02/07/00	65.10	64.08		
5,567.43				02/14/00	64.80	63.78		
5,567.63				02/23/00	64.60	63.58		
5,567.73				03/01/00	64.50	63.48		
5,567.83				03/08/00	64.40	63.38		
5,567.70				03/15/00	64.53	63.51		
5,568.03				03/20/00	64.20	63.18		
5,567.93				03/29/00	64.30	63.28		
5,567.63				04/04/00	64.60	63.58		
5,567.83				04/13/00	64.40	63.38		
5,568.03				04/21/00	64.20	63.18		
5,568.23				04/28/00	64.00	62.98		
5,568.13				05/01/00	64.10	63.08		
5,568.53				05/11/00	63.70	62.68		
5,568.23				05/15/00	64.00	62.98		
5,568.53				05/25/00	63.70	62.68		
5,568.61				06/09/00	63.62	62.60		
5,568.69				06/16/00	63.54	62.52		
5,568.45				06/26/00	63.78	62.76		
5,568.61				07/06/00	63.62	62.60		
5,568.61				07/06/00	63.62	62.60		
5,568.49				07/13/00	63.74	62.72		
				07/18/00	63.68	62.66		
5,568.55						62.56		
5,568.65				07/27/00	63.58	62.48		
5,568.73				08/02/00	63.50			
5,568.77				08/09/00	63.46	62.44		
5,568.76				08/16/00	63.47	62.45		
5,568.95				08/31/00	63.28	62.26		
5,568.49				09/08/00	63.74	62.72		
5,568.67				09/13/00	63.56	62.54		
5,568.96				09/20/00	63.27	62.25		
5,568.93				10/05/00	63.3	62.28		
5,569.34				11/09/00	62.89	61.87		
5,568.79				12/06/00	63.44	62.42		
5,569.11				01/03/01	63.12	62.10		
5,569.75				02/09/01	62.48	61.46		
5,570.34				03/28/01	61.89	60.87		

Water Levels	and Data over Time
White Mesa	Mill - Well TW4-3

Water Elevation	Land Surface	Measuring Point Elevation	Length Of	Date Of	Total or Measured Depth to Water	Total Depth to Water	
(z)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Total Depth Of Well
	5,631.21	5,632.23	1.02	<u> </u>		<u> </u>	141
5,570.61				04/30/01	61.62	60.60	
5,570.70				05/31/01	61.53	60.51	
5,570.88				06/21/01	61.35	60.33	
5,571.02				07/10/01	61.21	60.19	
5,571.70				08/20/01	60.53	59.51	
5,572.12				09/19/01	60.11	59.09	
5,572.08				10/02/01	60.15	59.13	
5,570.70				05/31/01	61.53	60.51	
5,570.88				06/21/01	61.35	60.33	
5,571.02				07/10/01	61.21	60.19	
5,571.70				08/20/01	60.53	59.51	
5,572.12				09/19/01	60.11	59.09	
5,572.08				10/02/01	60.15	59.13	
5,572.78				11/08/01	59.45	58.43	
5,573.27				12/03/01	58.96	57.94	
5,573.47				01/03/02	58.76	57.74	
5,573.93				02/06/02	58.30	57.28	
5,574.75				03/26/02	57.48	56.46	
5,574.26				04/09/02	57.97	56.95	
5,575.39				05/23/02	56.84	55.82	
5,574.84				06/05/02	57.39	56.37	
5,575.33				07/08/02	56.90	55.88	
5,575.79				08/23/02	56.44	55.42	
5,576.08				09/11/02	56.15	55.13	
5,576.30				10/23/02	55.93	54.91	
5,576.35				11/22/02	55.88	54.86	
5,576.54				12/03/02	55.69	54.67	
5,576.96				01/09/03	55.27	54.25	
5,577.11				02/12/03	55.12	54.10	
5,577.61				03/26/03	54.62	53.60	
5,572.80				04/02/03	59.43	58.41	
5,577.89				05/01/03	54.34	53.32	
5,577.91				06/09/03	54.32	53.30	
5,577.53				07/07/03	54.70	53.68	
5,577.50				08/04/03	54.73	53.71	
5,577.71				09/11/03	54.52	53.50	
5,577.31				10/02/03	54.92	53.90	
5,577.33				11/07/03	54.90	53.88	
5,577.34				12/03/03	54.89	53.87	
5,578.24				01/15/04	53.99	52.97	
5,578.38				02/10/04	53.85	52.83	
5,578.69				03/28/04	53.54	52.52	
5,579.15				04/12/04	53.08	52.06	

			AA HIGE IMIG	5a IVIIII - VVC			
					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	
(z)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Total Depth Of Well
	5,631.21	5,632.23	1.02				141
5,579.47				05/13/04	52.76	51.74	
5,579.53				06/18/04	52.70	51.68	
5,580.17				07/28/04	52.06	51.04	
5,580.20				08/30/04	52.03	51.01	
5,580.26				09/16/04	51.97	50.95	
5,580.12				10/11/04	52.11	51.09	
5,579.93				11/16/04	52.30	51.28	,
5,580.07				12/22/04	52.16	51.14	
5,579.80				01/18/05	52.43	51.41	
5,580.35				02/28/05	51.88	50.86	
5,580.57				03/15/05	51.66	50.64	
5,580.86				04/26/05	51.37	50.35	
5,581.20				05/24/05	51.03	50.01	
5,581.51				06/30/05	50.72	49.70	
5,581.55				07/29/05	50.68	49.66	
5,581.68				09/12/05	50.55	49.53	
5,581.83				12/07/05	50.4	49.38	
5,564.92				⁶¹ 03/08/06	67.31	66.29	
5,582.73				06/13/06	49.50	48.48	
5,582.33				07/18/06	49.90	48.88	
5,582.75				11/07/06	49.48	48.46	
5583.35				02/27/07	48.88	47.86	
5,559.57				05/02/07	72.66	71.64	
5,583.29				08/14/07	48.94	47.92	
5,583.49				10/10/07	48.74	47.72	
5,584.95				03/26/08	47.28	46.26	
5,584.59				06/24/08	47.64	46.62	
5,584.55				08/26/08	47.68	46.66	
5,584.03				10/14/08	48.2	47.18	
5,583.64				03/03/09	48.59	47.57	
5,587.34				06/24/09	44.89	43.87	
5,582.90				09/10/09	49.33	48.31	
5,583.27				12/11/09	48.96	47.94	
5,583.63				03/11/10	48.6	47.58	
5,583.82				05/11/10	48.4 1	47.39	
5,583.51				09/29/10	48.72	47.70	
5,582.86				12/21/10	49.37	48.35	
5,582.60				02/28/11	49.63	48.61	
-,							

		AA TITO					
					Total or		
		Measuring			Measured	Total	T . (.)
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(Z)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,612.301	5,613.485	1.184				114.5
5,512.145				05/25/00	101.34	100.16	
5,518.985				06/09/00	94.50	93.32	
5,512.145				06/16/00	101.34	100.16	
5,517.465				06/26/00	96.02	94.84	
5,520.145				07/06/00	93.34	92.16	
5,521.435				07/13/00	92.05	90.87	
5,522.005				07/18/00	91.48	90.30	
5,522.945				07/27/00	90.54	89.36	
5,523.485				08/02/00	90.00	88.82	
5,523.845				08/09/00	89.64	88.46	
5,523.885				08/15/00	89.60	88.42	
5,524.555				09/01/00	88.93	87.75	
5,513.235				09/08/00	100.25	99.07	
5,516.665				09/13/00	96.82	95.64	
5,519.085				09/20/00	94.40	93.22	
5,522.165				10/05/00	91.32	90.14	
5,524.665				11/09/00	88.82	87.64	
5,518.545				12/06/00	94.94	93.76	
5,527.695				01/03/01	85.79	84.61	
5,529.085				02/09/01	84.40	83.22	
5,529.535				03/27/01	83.95	82.77	
5,530.235				04/30/01	83.25	82.07	
5,530.265				05/31/01	83.22	82.04	
5,534.405				06/22/01	79.08	77.90	
5,533.145				07/10/01	80.34	79.16	
5,534.035				08/20/01	79.45	78.27	
5,534.465				09/19/01	79.02	77.84	
5,533.285				10/02/01	80.20	79.02	
5,530.265				05/31/01	83.22	82.04	
5,534.405				06/21/01	79.08	77.90	
5,533.145				07/10/01	80.34	79.16	
5,534.035				08/20/01	79.45	78.27	
5,534.465				09/19/01	79.02	77.84	
5,533.285				10/02/01	80.20	79.02	
5,533.865				11/08/01	79.62	78.44	
5,534.275				12/03/01	79.21	78.03	
5,534.715				01/03/02	78.77	77.59	
5,535.435				02/06/02	78.05	76.87	
5,536.445				03/26/02	77.04	75.86	
5,536.405				04/09/02	77.08	75.90	
5,537.335				05/23/02	76.15	74.97	
5,537.325				06/05/02	76.16	74.98	
5,537.975				07/08/02	75.51	74.33	
0,001.010				0,1,00,02			

		VV 1110	e iviesa ivili				
					Total or	Total	
33 7 - 4	T J	Measuring			Measured		Total
Water	Land	Point			Depth to	Depth to	
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(z)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,612.301	5,613.485	1.184				114.3
5,538.825				08/23/02	74.66	73.48	
5,539.275				09/11/02	74.21	73.03	
5,539.765				10/23/02	73.72	72.54	
5,540.205				11/22/02	73.28	72.10	
5,540.295				12/03/02	73.19	72.01	
5,540.795				01/09/03	72.69	71.51	
5,540.985				02/12/03	72.50	71.32	
5,541.675				03/26/03	71.81	70.63	
5,541.765				04/02/03	71.72	70.54	
5,541.885				05/01/03	71.60	70.42	
5,542.025				06/09/03	71.46	70.28	
5,541.925				07/07/03	71.56	70.38	
5,541.885				08/04/03	71.60	70.42	
5,541.825				09/11/03	71.66	70.48	
5,541.885				10/02/03	71.60	70.42	
5,541.995				11/07/03	71.49	70.31	
5,542.005				12/03/03	71.48	70.30	
5,542.555				01/15/04	70.93	69.75	
5,542.705				02/10/04	70.78	69.60	
5,543.225				03/28/04	70.26	69.08	
5,543.555				04/12/04	69.93	68.75	
5,543.865				05/13/04	69.62	68.44	
5,543.915				06/18/04	69.57	68.39	
5,544.655				07/28/04	68.83	67.65	
5,544.795				08/30/04	68.69	67.51	
5,544.845				09/16/04	68.64	67.46	
5,544.705				10/11/04	68.78	67.60	
5,544.525				11/16/04	68.96	67.78	
5,544.625				12/22/04	68.86	67.68	
5,544.305				01/18/05	69.18	68.00	
5,544.585				02/28/05	68.90	67.72	
5,544.685				03/15/05	68.80	67.62	
5,544.675				04/26/05	68.81	67.63	
5,544.785				05/24/05	68.70	67.52	
5,544.795				06/30/05	68.69	67.51	
5,544.775				07/29/05	68.71	67.53	
5,545.005				09/12/05	68.48	67.30	
5,545.225				12/07/05	68.26	67.08	
5,545.735				03/08/06	67.75	66.57	
5,545.785				06/14/06	67.70	66.52	
5,545.855				07/18/06	67.63	66.45	
5,545.805				11/07/06	67.68	66.50	
5546.675				02/27/07	66.81	65.63	
5570.075				02121101	00.01	00.00	

Water Elevation (z)	Land Surface (LSD) 5,612.301	Measuring Point Elevation (MP) 5,613.485	Length Of Riser (L) 1.184	Date Of Monitoring	Total or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well 114.5
5,546.535				05/02/07	66.95	65.77	
5,547.155				08/15/07	66.33	65.15	
5,547.215				10/10/07	66.27	65.09	
5,548.305				03/26/08	65.18	64.00	
5,548.865				06/24/08	64.62	63.44	
5,549.235				08/26/08	64.25	63.07	
5,549.305				10/14/08	64.18	63.00	
5,549.725				03/03/09	63.76	62.58	
5,549.905				06/24/09	63.58	62.40	
5,549.695				09/10/09	63.79	62.61	
5,549.865				12/11/09	63.62	62.44	
5,545.60				03/11/10	67.89	66.71	
5,530.88				05/11/10	82.61	81.43	
5,545.24				09/29/10	68.25	67.07	
5,533.66				12/21/10	79.83	78.65	
5,544.44				02/28/11	69.05	67.87	

/

		W III	e iviesa ivii	II - wei i			
		_			Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(Z)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,638.75	5,640.70	1.95				121.75
5,579.30				01/02/00	61.40	59.45	
5,579.60		~		01/10/00	61.10	59.15	
5,579.35				01/17/00	61.35	59.40	
5,579.60				01/24/00	61.10	59.15	
5,579.50				02/01/00	61.20	59.25	
5,579.50				02/07/00	61.20	59.25	
5,579.90				02/14/00	60.80	58.85	
5,579.90				02/23/00	60.80	58.85	
5,580.20				03/01/00	60.50	58.55	
5,580.00				03/08/00	60.70	58.75	
5,580.04				03/15/00	60.66	58.71	
5,580.70				03/20/00	60.00	58.05	
5,580.30				03/29/00	60.40	58.45	
5,580.00				04/04/00	60.70	58.75	
5,580.20				04/13/00	60.50	58.55	
5,580.40				04/21/00	60.30	58.35	
5,580.50				04/28/00	60.20	58.25	
5,580.50				05/01/00	60.20	58.25	
5,580.90				05/11/00	59.80	57.85	
5,580.50				05/15/00	60.20	58.25	
5,580.75				05/25/00	59.95	58.00	
5,580.80				06/09/00	59.90	57.95	
5,580.92				06/16/00	59.78	57.83	
5,580.80				06/26/00	59.90	57.95	
5,580.90				07/06/00	59.80	57.85	
5,581.05				07/13/00	59.65	57.70	
5,580.90				07/18/00	59.80	57.85	
5,581.05				07/27/00	59.65	57.70	
5,581.06				08/02/00	59.64	57.69	
5,581.08				08/09/00	59.62	57.67	
5,581.07				08/16/00	59.63	57.68	
5,581.25				08/31/00	59.45	57.50	
5,581.32				09/08/00	59.38	57.43	
5,581.34				09/13/00	59.36	57.41	
5,581.41				09/20/00	59.29	57.34	
5,581.37				10/05/00	59.33	57.38	
5,581.66				11/09/00	59.04	57.09	
5,581.63				12/06/00	59.07	57.12	
5,581.92				01/03/01	58.78	56.83	
5,582.20				02/09/01	58.50	56.55	
5,582.54				03/28/01	58.16	56.21	
5,582.72				03/28/01	57.98	56.03	
5,582.72				04/30/01	57.98	56.03	
5,504.12				05/51/01	51.70	50.05	

-

					Total or	T - 4 - 1	
		Measuring			Measured	Total	m (1
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
<u>(z)</u>	(LSD)	<u>(MP)</u>	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,638.75	5,640.70	1.95				121.75
5,582.81				06/22/01	57.89	55.94	
5,582.92				07/10/01	57.78	55.83	
5,583.17				08/20/01	57.53	55.58	
5,583.28				09/19/01	57.42	55.47	
5,583.36				10/02/01	57.34	55.39	
5,582.72				05/31/01	57.98	56.03	
5,582.81				06/21/01	57.89	55.94	
5,582.92				07/10/01	57 <i>.</i> 78	55.83	
5,583.17				08/20/01	57.53	55.58	
5,583.28				09/19/01	57.42	55.47	
5,583.36				10/02/01	57.34	55.39	
5,583.49				11/08/01	57.21	55.26	
5,583.84				12/03/01	56.86	54.91	
5,583.79				01/03/02	56.91	54.96	
5,583.96				02/06/02	56.74	54.79	
5,584.39				03/26/02	56.31	54.36	
5,584.12				04/09/02	56.58	54.63	
5,584.55				05/23/02	56.15	54.20	
5,584.42				06/05/02	56.28	54.33	
5,583.65				07/08/02	57.05	55.10	
5,584.90				08/23/02	55.80	53.85	
5,585.02				09/11/02	55.68	53.73	
5,585.20				10/23/02	55.50	53.55	
5,585.15				11/22/02	55.55	53.60	
5,585.42				12/03/02	55.28	53.33	
5,585.65				01/09/03	55.05	53.10	
5,585.65				02/12/03	55.05	53.10	
5,585.92				03/26/03	54.78	52.83	
5,586.22				04/02/03	54.48	52.53	
5,586.01				05/01/03	54.69	52.74	
5,584.81				06/09/03	55.89	53.94	
5,584.34				07/07/03	56.36	54.41	
5,584.40				08/04/03	56.30	54.35	
5,583.88				09/11/03	56.82	54.87	
5,583.57				10/02/03	57.13	55.18	
5,583.39				11/07/03	57.31	55.36	
5,583.97				12/03/03	56.73	54.78	
5,585.28				01/15/04	55.42	53.47	
5,585.50 5,585.50				02/10/04	55.20	53.25	
•				02/10/04 03/28/04	54.83	52.88	
5,585.87				03/28/04	54.50	52.55	
5,586.20				04/12/04 05/13/04	54.50 54.25	52.33 52.30	
5,586.45				05/13/04 06/18/04	54.25 54.20	52.30 52.25	
5,586.50				00/10/04	J 4. 40	14.43	

Total or Measuring Measured Total	
o	
Water Land Point Depth to Depth to Total	ator
Elevation Surface Elevation Length Of Date Of Water Water Depth C	
(z) (LSD) (MP) Riser (L) Monitoring (blw.MP) (blw.LSD) Well	
5,638.75 5,640.70 1.95 121.75	
5,587.13 07/28/04 53.57 51.62	
5,586.22 08/30/04 54.48 52.53	
5,585.69 09/16/04 55.01 53.06	
5,585.17 10/11/04 55.53 53.58	
5,584.64 11/16/04 56.06 54.11	
5,584.77 12/22/04 55.93 53.98	
5,584.65 01/18/05 56.05 54.10	
5,584.98 02/28/05 55.72 53.77	
5,585.15 03/15/05 55.55 53.60	
5,586.25 04/26/05 54.45 52.50	
5,586.79 05/24/05 53.91 51.96	
5,586.52 06/30/05 54.18 52.23	
5,586.03 07/29/05 54.67 52.72	
5,586.05 09/12/05 54.65 52.70	
5,585.80 12/07/05 54.90 52.95	
5,587.06 03/08/06 53.64 51.69	
5,585.90 06/13/06 54.80 52.85	
5,585.32 07/18/06 55.38 53.43	
5,585.35 11/07/06 55.35 53.40	
5585.81 02/27/07 54.89 52.94	
5,585.20 05/02/07 55.50 53.55	
5,586.66 08/14/07 54.04 52.09	
5,586.80 10/10/07 53.90 51.95	
5,588.48 03/26/08 52.22 50.27	
5,586.51 06/24/08 54.19 52.24	
5,586.45 08/26/08 54.25 52.30	
5,585.40 10/14/08 55.3 53.35	
5,584.80 03/03/09 55.9 53.95	
5,584.73 06/24/09 55.97 54.02	
5,584.36 09/10/09 56.34 54.39	
5,585.02 12/11/09 55.68 53.73	
5,585.66 03/11/10 55.04 53.09	
5,584.86 05/11/10 55.84 53.89	
5,584.55 09/29/10 56.15 54.20	
5,584.17 12/21/10 56.53 54.58	
5,583.55 02/28/11 57.15 55.20	

ς

					Total or		
		Measuring			Measured	Total	Total
Water	Land	Point			Depth to	Depth to	Depth Of
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Well
(z)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	(blw.LSD)
	5,607.33	5,608.78	1.450	Monitoring		(DIW.LSD)	98.55
5,522.28	5,007.55	5,008.78	1.450	05/25/00	86.50	85.05	70.55
5,521.51				06/09/00	80.30 87.27	85.82	
5,522.35				06/16/00	86.43	83.82 84.98	
5,522.13				06/26/00	86.64	85.19	
5,522.14				07/06/00	86.53	85.08	
5,522.13				07/13/00	86.65	85.20	
5,522.13				07/18/00	86.63 86.61	85.16	
5,522.26				07/25/00	86.52	85.07	
5,522.20					86.47		
5,522.31				08/02/00		85.02	
-				08/09/00	86.45	85.00	
5,522.35				08/15/00	86.43	84.98	
5,522.40				08/31/00	86.38	84.93	
5,522.40				09/08/00	86.38	84.93	
5,522.45				09/13/00	86.33	84.88	
5,522.53				09/20/00	86.25	84.80	
5,522.39				10/05/00	86.39	84.94	
5,522.42				11/09/00	86.36	84.91	
5,522.29				12/06/00	86.49	85.04	
5,522.63				01/03/01	86.15	84.70	
5,522.72				02/09/01	86.06	84.61	
5,522.90				03/26/01	85.88	84.43	
5,522.70				04/30/01	86.08	84.63	
5,522.89				05/31/01	85.89	84.44	
5,522.88				06/20/01	85.90	84.45	
5,522.96				07/10/01	85.82	84.37	
5,523.10				08/20/01	85.68	84.23	
5,523.23				09/19/01	85.55	84.10	
5,523.21				10/02/01	85.57	84.12	
5,522.89				05/31/01	85.89	84.44	
5,522.88				06/21/01	85.90	84.45	
5,522.96				07/10/01	85.82	84.37	
5,523.10				08/20/01	85.68	84.23	
5,523.23				09/19/01	85.55	84.10	
5,523.21				10/02/01	85.57	84.12	
5,523.25				11/08/01	85.53	84.08	
5,523.46				12/03/01	85.32	83.87	
5,523.36				01/03/02	85.42	83.97	
5,523.50				02/06/02	85.28	83.83	
5,523.94				03/26/02	84.84	83.39	
5,523.75				04/09/02	85.03	83.58	
5,524.23				05/23/02	84.55	83.10	
5,523.98				06/05/02	84.80	83.35	
5,524.31				07/08/02	84.47	83.02	

		W III	e mesa min	u - wen i w			
Water Elevation (z)	Land Surface (LSD) 5,607.33	Measuring Point Elevation (MP) 5,608.78	Length Of Riser (L) 1.450	Date Of Monitoring	Total or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well (blw.LSD) 98.55
5.504.20	5,007.55	5,000.70	1.150	00/00/00	04.42	82.07	
5,524.36				08/23/02	84.42	82.97	
5,524.49				09/11/02	84.29	82.84	
5,524.71				10/23/02	84.07 84.18	82.62 82.73	
5,524.60				11/22/02			
5,524.94				12/03/02	83.84	82.39 82.33	
5,525.10				01/09/03	83.68	82.23	
5,525.15				02/12/03	83.63	82.18	
5,525.35				03/26/03	83.43	81.98	
5,525.68				04/02/03	83.10	81.65	
5,525.74				05/01/03	83.04	81.59	
5,525.98				06/09/03	82.80	81.35	
5,526.04				07/07/03	82.74	81.29	
5,526.07				08/04/03	82.71	81.26	
5,526.42				09/11/03	82.36	80.91	
5,526.30				10/02/03	82.48	81.03	
5,526.41				11/07/03	82.37	80.92	
5,526.46				12/03/03	82.32	80.87	
5,526.83				01/15/04	81.95	80.50	
5,526.81				02/10/04	81.97	80.52	
5,527.14				03/28/04	81.64	80.19	
5,527.39				04/12/04	81.39	79.94	
5,527.64				05/13/04	81.14	79.69	
5,527.70				06/18/04	81.08	79.63	
5,528.16				07/28/04	80.62	79.17	
5,528.30				08/30/04	80.48	79.03	
5,528.52				09/16/04	80.26	78.81	
5,528.71				10/11/04	80.07	78.62	
5,528.74				11/16/04	80.04	78.59	
5,529.20				12/22/04	79.58	78.13	
5,528.92				01/18/05	79.86	78.41	
5,529.51				02/28/05	79.27	77.82	
5,529.74				03/15/05	79.04	77.59	
5,529.96				04/26/05	78.82	77.37	
5,530.15				05/24/05	78.63	77.18	
5,530.35				06/30/05	78.43	76.98	
5,530.47				07/29/05	78.31	76.86	
5,530.95				09/12/05	77.83	76.38	
5,531.50				12/07/05	77.28	75.83	
5,532.43				03/08/06	76.35	74.90	
5,533.49				06/13/06	75.29	73.84	
5,532.58				07/18/06	76.20	74.75	
5,532.88				11/07/06	75.90	74.45	
5534.09				02/27/07	74.69	73.24	

					Total or		
		Measuring			Measured	Total	Total
Water	Land	Point			Depth to	Depth to	Depth Of
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Weli
(z)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	(blw.LSD)
	5,607.33	5,608.78	1.450				98.55
5,534.04				05/02/07	74.74	73.29	
5,534.43				08/14/07	74.35	72.90	
5,554.54				10/10/07	54.24	52.79	
5,535.40				03/26/08	73.38	71.93	
5,535.55				06/24/08	73.23	71.78	
5,535.90				08/26/08	72.88	71.43	
5,535.87				10/14/08	72.91	71.46	
5,536.42				03/10/09	72.36	70.91	
5,536.71				06/24/09	72.07	70.62	
5,536.83				09/10/09	71.95	70.50	
5,537.35				12/11/09	71.43	69.98	
5,537.93				03/11/10	70.85	69.40	
5,538.14				05/11/10	70.64	69.19	
5,538.03				09/29/10	70.75	69.30	
5,538.04				12/21/10	70.74	69.29	
5,537.98				02/28/11	70.8	69.35	

Water Elevation (WL)	Land Surface (LSD)	W Measuring Point Elevation (MP)	Length Of Riser (L)	Date Of Monitoring	Total or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well (blw.LSD)
	5,619.87	5,621.07	1.20				119.8
5,552.37				11/29/99	68.70	67.50	
5,553.57				01/02/00	67.50	66.30	
5,553.87				01/10/00	67.20	66.00	
5,553.72				01/17/00	67.35	66.15	
5,553.97				01/24/00	67.10	65.90	
5,553.87				02/01/00	67.20	66.00	
5,553.87				02/07/00	67.20	66.00	
5,554.17				02/14/00	66.90	65.70	
5,554.27				02/23/00	66.80	65.60	
5,554.37				03/01/00	66.70	65.50	
5,554.37				03/08/00	66.70	65.50	
5,554.27				03/15/00	66.80	65.60	
5,554.77				03/20/00	66.30	65.10	
5,554.57				03/29/00	66.50	65.30	
5,554.27				04/04/00	66.80	65.60	
5,554.57				04/13/00	66.50	65.30	
5,554.77				04/21/00	66.30	65.10	
5,554.87				04/28/00	66.20	65.00	
5,554.87				05/01/00	66.20	65.00	
5,555.27				05/11/00	65.80	64.60	
5,554.97				05/15/00	66.10	64.90	
5,555.27				05/25/00	65.80	64.60	
5,555.33				06/09/00	65.74	64.54	
5,555.45				06/16/00	65.62	64.42	
5,555.22				06/26/00	65.85	64.65	
5,555.45				07/06/00	65.62	64.42	
5,555.40				07/13/00	65.67	64.47	
5,555.45				07/18/00	65.62	64.42	
5,555.59				07/27/00	65.48	64.28	
5,555.65				08/02/00	65.42	64.22	
5,555.70				08/09/00	65.37	64.17	
5,555.74				08/16/00	65.33	64.13	
5,555.96				08/31/00	65.11	63.91	
5,555.87				09/08/00	65.20	64.00	
5,555.95				09/13/00	65.12	63.92	
5,556.05				09/13/00	65.02	63.82	
5,556.06				10/05/00	65.01	63.81	
5,556.06 5,556.17				10/03/00	64.90	63.70	
-				10/12/00	64.90 64.87	63.67	
5,556.20 5,556.22				10/19/00	64.87 64.85	63.65	
5,556.22				10/23/00	64.83 64.71	63.51	
5,556.36				11/14/00	64.65	63.45	
5,556.42 5,556.45				11/14/00	64.63 64.62	63.43 63.42	
5,550.45				11/50/00	07.02	03.72	

white Mesa Mill - well 1 w4-7									
Water Elevation (WL)	Land Surface (LSD)	Measuring Point Elevation (MP)	Length Of Riser (L)	Date Of Monitoring	Total or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well (blw.LSD)		
	5,619.87	5,621.07	1.20				119.8		
5,556.15				12/06/00	64.92	63.72			
5,556.89				01/14/01	64.18	62.98			
5,557.07				02/09/01	64.00	62.80			
5,557.62				03/29/01	63.45	62.25			
5,557.51				04/30/01	63.56	62.36			
5,557.77				05/31/01	63.30	62.10			
5,557.84				06/21/01	63.23	62.03			
5,557.98				07/10/01	63.09	61.89			
5,558.33				08/20/01	62.74	61.54			
5,558.57				09/19/01	62.50	61.30			
5,558.53				10/02/01	62.54	61.34			
5,558.62				11/08/01	62.45	61.25			
5,559.03				12/03/01	62.04	60.84			
5,559.08				01/03/02	61.99	60.79			
5,559.32				02/06/02	61.75	60.55			
5,559.63				03/26/02	61.44	60.24			
5,559.55				04/09/02	61.52				
5,560.06				05/23/02	61.01	59.81			
5,559.91				06/05/02	61.16	59.96			
5,560.09				07/08/02	60.98	59.78			
5,560.01				08/23/02	61.06	59.86			
5,560.23				09/11/02	60.84	59.64			
5,560.43				10/23/02	60.64	59.44			
5,560.39				11/22/02	60.68	59.48			
5,560.61				12/03/02	60.46	59.26			
5,560.89				01/09/03	60.18	58.98			
5,560.94				02/12/03	60.13	58.93			
5,561.28				03/26/03	59.79	58.59			
5,561.35				04/02/03	59.72	58.52			
5,546.20				05/01/03	74.87	73.67			
5,539.47				06/09/03	81.60	80.40			
5,541.87				07/07/03	79.20	78.00			
5,542.12				08/04/03	78.95	77.75			
5,541.91				09/11/03	79.16	77.96			
5,544.62				10/02/03	76.45	75.25			
5,542.67				11/07/03	78.40	77.20			
5,549.96				12/03/03	71.11	69.91			
5,557.17				01/15/04	63.90	62.70			
5,557.17 5,558.65				02/10/04	62.42	61.22			
5,558.65 5,559.90				03/28/04	61.17	59.97			
5,560.36				03/28/04	60.71	59.51			
5,560.87				05/13/04	60.20	59.00			
5,560.87				06/18/04	60.12	58.92			
3,300.93				00/10/04	00.12	30.72			

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total Depth
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Of Well
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	(blw.LSD)
	5,619.87	5,621.07	1.20				119.8
5,561.64				07/28/04	59.43	58.23	
5,543.00				08/30/04	78.07	76.87	
5,541.91				09/16/04	79.16	77.96	
5,540.08				10/11/04	80.99	79.79	
5,546.92				11/16/04	74.15	72.95	
5,546.97				12/22/04	74.10	72.90	
5,546.51				01/18/05	74.56	73.36	
5,546.66				02/28/05	74.41	73.21	
5,546.81				03/15/05	74.26	73.06	
5,548.19				04/26/05	72.88	71.68	
5,547.11				05/24/05	73.96	72.76	
5,546.98				06/30/05	74.09	72.89	
5,546.92				07/29/05	74.15	72.95	
5,547.26				09/12/05	73.81	72.61	
5,547.26				12/07/05	73.81	72.61	
5,548.86				03/08/06	72.21	71.01	
5,548.62				06/13/06	72.45	71.25	
5,550.04				07/18/06	71.03	69.83	
5,548.32				11/07/06	72.75	71.55	
5,550.44				02/27/07	70.63	69.43	
5,549.69				05/02/07	71.38	70.18	
5,549.97				08/14/07	71.10	69.90	
5,550.30				10/10/07	70.77	69.57	
5,551.92				03/26/08	69.15	67.95	
5,552.94				06/24/08	68.13	66.93	
5,552.34				08/26/08	68.73	67.53	
5,552.61				10/14/08	68.46	67.26	
5,552.81				03/10/09	68.26	67.06	
5,553.11				06/24/09	67.96	66.76	
5,552.55				09/10/09	68.52	67.32	
5,553.06				12/11/09	68.01	66.81	
5,554.64				03/11/10	66.43	65.23	
5,554.20				05/11/10	66.87	65.67	
5,553.45				09/29/10	67.62	66.42	
5,553.40				12/21/10	67.67	66.47	
5,553.93				02/28/11	67.14	65.94	

					Total or		
		Measuring			Measured		
Water	Land	Point			Depth to	Total Depth	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	to Water	Depth Of
(WL)	(LSD)	<u>(MP)</u>	Riser (L)	Monitoring	(biw.MP)	(blw.LSD)	Well
	5,616.80	5,618.21	1.41				126.00
5,543.21				11/29/99	75.00	73.59	
5,543.01				01/02/00	75.20	73.79	
5,543.31				01/10/00	74.90	73.49	
5,543.11				01/17/00	75.10	73.69	
5,543.41				01/24/00	74.80	73.39	
5,543.31				02/01/00	74.90	73.49	
5,543.31				02/07/00	74.90	73.49	
5,543.71				02/14/00	74.50	73.09	
5,543.76				02/23/00	74.45	73.04	
5,543.86				03/01/00	74.35	72.94	
5,543.86				03/08/00	74.35	72.94	
5,543.91				03/15/00	74.30	72.89	
5,544.31				03/20/00	73.90	72.49	
5,544.21				03/29/00	74.00	72.59	
5,544.01				04/04/00	74.20	72.79	
5,544.21				04/13/00	74.00	72.59	
5,544.41				04/21/00	73.80	72.39	
5,544.51				04/28/00	73.70	72.29	
5,544.51				05/01/00	73.70	72.29	
5,544.81				05/11/00	73.40	71.99	
5,544.51				05/15/00	73.70	72.29	
5,544.71				05/25/00	73.50	72.09	
5,544.71				06/09/00	73.50	72.09	
5,544.81				06/16/00	73.40	71.99	
5,544.68				06/26/00	73.53	72.12	
5,544.76				07/06/00	73.45	72.04	
5,544.77				07/13/00	73.44	72.03	
5,544.76				07/18/00	73.45	72.04	
5,544.92				07/27/00	73.29	71.88	
5,544.96				08/02/00	73.25	71.84	
5,544.98				08/09/00	73.23	71.82	
5,544.97				08/15/00	73.24	71.83	
5,545.21				08/31/00	73.00	71.59	
5,545.31				09/08/00	72.90	71.49	
5,545.43				09/13/00	72.78	71.37	
5,545.56				09/20/00	72.65	71.24	
5,545.57				10/05/00	72.64	71.23	
5,545.81				11/09/00	72.40	70.99	
5,545.66				12/06/00	72.55	71.14	
5,546.28				01/03/01	71.93	70.52	
5,546.70				02/09/01	71.51	70.10	
5,547.18				03/27/01	71.03	69.62	
5,547.31				04/30/01	70.90	69.49	

Water	Land	Measuring Point			Total or Measured Depth to	Total Depth	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	to Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,616.80	5,618.21	1.41				126.00
5,547.49				05/31/01	70.72	69.31	
5,547.49				06/20/01	70.72	69.31	
5,547.83				07/10/01	70.38	68.97	
5,548.13				08/20/01	70.08	68.67	
5,548.30				09/19/01	69.91	68.50	
5,548.45				10/02/01	69.76	68.35	
5,547.49				05/31/01	70.72	69.31	
5,547.54				06/21/01	70.67	69.26	
5,547.83				07/10/01	70.38	68.97	
5,548.13				08/20/01	70.08	68.67	
5,548.30				09/19/01	69.91	68.50	
5,548.45				10/02/01	69.76	68.35	
5,548.62				11/08/01	69.59	68.18	
5,549.03				12/03/01	69.18	67.77	
5,548.97				01/03/02	69.24	67.83	
5,549.19				02/06/02	69.02	67.61	
5,549.66				03/26/02	68.55	67.14	
5,549.64				04/09/02	68.57	67.16	
5,550.01				05/23/02	68.20	66.79	
5,549.97				06/05/02	68.24	66.83	
5,550.13				07/08/02	68.08	66.67	
5,550.30				08/23/02	67.91	66.50	
5,550.50				09/11/02	67.71	66.30	
5,550.90				10/23/02	67.31	65.90	
5,550.83				11/22/02	67.38	65.97	
5,551.04				12/03/02	67.17	65.76	
5,551.24				01/09/03	66.97	65.56	
5,551.23				02/12/03	66.98	65.57	
5,551.52				03/26/03	66.69	65.28	
5,551.64				04/02/03	66.57	65.16	
5,549.02				05/01/03	69.19	67.78	
5,544.74				06/09/03	73.47	72.06	
5,543.78				07/07/03	74.43	73.02	
5,543.39				08/04/03	74.82	73.41	
5,543.05				09/11/03	75.16	73.75	
5,543.19				10/02/03	75.02	73.61	
5,543.21				11/07/03	75.00	73.59	
5,543.40				12/03/03	74.81	73.40	
5,548.10				01/15/04	70.11	68.70	
5,549.50				02/10/04	68.71	67.30	
5,550.87				03/28/04	67.34	65.93	
5,551.33				04/12/04	66.88	65.47	
5,551.87				05/13/04	66.34	64.93	

					Total or		
		Measuring			Measured		
Water	Land	Point			Depth to	Total Depth	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	to Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,616.80	5,618.21	1.41	munitoring		(0111202)	126.00
5,551.92	- ,			06/18/04	66.29	64.88	
5,552.69				07/28/04	65.52	64.11	
5,549.78				08/30/04	68.43	67.02	
5,547.46				09/16/04	70.75	69.34	
5,545.21				10/11/04	73.00	71.59	
5,545.09				11/16/04	73.12	71.71	
5,545.61				12/22/04	72.60	71.19	
5,545.24				01/18/05	72.97	71.56	
5,545.42				02/28/05	72.79	71.38	
5,545.45				03/15/05	72.76	71.35	
5,545.46				04/26/05	72.75	71.34	
5,545.66				05/24/05	72.55	71.14	
5,545.54				06/30/05	72.67	71.26	
5,545.43				07/29/05	72.78	71.37	
5,545.61				09/12/05	72.60	71.19	
5,545.52				12/07/05	72.69	71.28	
5,546.53				03/08/06	71.68	70.27	
5,546.51				06/13/06	71.70	70.29	
5,546.51				07/18/06	71.70	70.29	
5,546.46				11/07/06	71.75	70.34	
5,547.92				02/27/07	70.29	68.88	
5,547.01				05/02/07	71.20	69.79	
5,547.40				08/14/07	70.81	69.40	
5,547.57				10/10/07	70.64	69.23	
5,548.76				03/26/08	69.45	68.04	
5,549.17				06/24/08	69.04	67.63	
5,549.31				08/26/08	68.9	67.49	
5,549.37				10/14/08	68.84	67.43	
5,549.72				03/03/09	68.49	67.08	
5,550.08				06/24/09	68.13	66.72	
5,549.93				09/10/09	68.28	66.87	
5,550.44				12/11/09	67.77	66.36	
5,551.46				03/11/10	66.75	65.34	
5,551.38				05/11/10	66.83	65.42	
5,551.15				09/29/10	67.06	65.65	
5,550.90				12/21/10	67.31	65.90	
5,551.31				02/28/11	66.9	65.49	

		AA UITC					
		N/			Total or Management	Total	
***	. .	Measuring			Measured		Total
Water	Land	Point	t 0.00		Depth to	Depth to	
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of Well
(WL)	(LSD)	(MP).	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	121.33
	5,636.11	5,637.59	1.48			<u> </u>	121.55
5,577.09				12/20/99	60.5	59.02	
5,577.09				01/02/00	60.5	59.02	
5,577.29				01/10/00	60.3	58.82	
5,577.09				01/17/00	60.5	59.02	
5,577.39				01/24/00	60.2	58.72	
5,577.29				02/01/00	60.3	58.82	
5,577.19				02/07/00	60.4	58.92	
5,577.69				02/14/00	59.9	58.42	
5,577.69				02/23/00	59.9	58.42	
5,577.79				03/01/00	59.8	58.32	
5,577.79				03/08/00	59.8	58.32	
5,577.89				03/15/00	59.7	58.22	
5,568.49				03/20/00	69.1	67.62	
5,578.14				03/29/00	59.45	57.97	
5,577.84				04/04/00	59.75	58.27	
5,578.04				04/13/00	59.55	58.07	
5,578.24				04/21/00	59.35	57.87	
5,578.39				04/28/00	59.2	57.72	
5,578.39				05/01/00	59.2	57.72	
5,578.79				05/11/00	58.8	57.32	
5,578.39				05/15/00	59.2	57.72	
5,578.79				05/25/00	58.8	57.32	
5,578.81				06/09/00	58.78	57.30	
5,578.89				06/16/00	58.7	57.22	
5,578.74				06/26/00	58.85	57.37	
5,578.86				07/06/00	58.73	57.25	
5,578.87				07/13/00	58.72	57.24	
5,578.84				07/18/00	58.75	57.27	
5,579.03				07/27/00	58.56	57.08	
5,579.03				08/02/00	58.56	57.08	
5,579.05				08/09/00	58.54	57.06	
5,579.04				08/15/00	58.55	57.07	
5,579.25				08/31/00	58.34	56.86	
5,579.35				09/08/00	58.24	56.76	
5,579.40				09/13/00	58.19	56.71	
5,579.46				09/20/00	58.13	56.65	
5,579.44				10/05/00	58.15	56.67	
5,579.79				11/09/00	57.8	56.32	
5,579.73				12/06/00	57.86	56.38	
5,580.01				01/03/01	57.58	56.10	
5,580.30				02/09/01	57.29	55.81	
5,580.66				03/27/01	56.93	55.45	
5,580.75				04/30/01	56.84	55.36	
5,500.75				0.020/01	÷0.01	20.00	

`

					Total or		
Water Elevation	Land Surface	Measuring Point Elevation	Length Of	Date Of	Measured Depth to Water	Total Depth to Water	Total Depth Of
(WL)	(LSD)	(MP)	Riser (L)		(blw.MP)	(blw.LSD)	Well
(112)	5,636.11	5,637.59	1.48	Monitoring	(01//1/12)	(0111202)	121.33
5,581.04	5,050.11		1.10	05/31/01	56.55	55.07	
5,581.12				06/21/01	56.47	54.99	
5,581.12				07/10/01	56.44	54.96	
5,581.15				08/20/01	56.08	54.60	
5,581.70				09/19/01	55.89	54.41	
5,581.61				10/02/01	55.98	54.50	
5,581.04				05/31/01	56.55	55.07	
5,581.12				06/21/01	56.47	54.99	
5,581.12				07/10/01	56.44	54.96	
5,581.51				08/20/01	56.08	54.60	
5,581.51				08/20/01	55.89	54.41	
5,581.61				10/02/01	55.98	54.50	
				11/08/01	55.76	54.28	
5,581.83				12/03/01	55.42	53.94	
5,582.17					55.38	53.94	
5,582.21				01/03/02	55.02	53.50	
5,582.57				02/06/02	55.02 54.47	52.99	
5,583.12				03/26/02	54.47 54.82	53.34	
5,582.77				04/09/02			
5,583.21				05/23/02	54.38	52.90	
5,582.94				06/05/02	54.65	53.17	
5,582.71				07/08/02	54.88	53.40	
5,583.67				08/23/02	53.92	52.44	
5,583.82				09/11/02	53.77	52.29	
5,584.01				10/23/02	53.58	52.10	
5,583.88				11/22/02	53.71	52.23	
5,583.81				12/03/02	53.78	52.30	
5,584.28				01/09/03	53.31	51.83	
5,584.41				02/12/03	53.18	51.70	
5,584.68				03/26/03	52.91	51.43	
5,584.49				04/02/03	53.10	51.62	
5,584.51				05/01/03	53.08	51.60	
5,583.59				06/09/03	54.00	52.52	
5,582.96				07/07/03	54.63	53.15	
5,582.98				08/04/03	54.61	53.13	
5,582.57				09/11/03	55.02	53.54	
5,582.25				10/02/03	55.34	53.86	
5,582.09				11/07/03	55.50	54.02	
5,582.48				12/03/03	55.11	53.63	
5,583.69				01/15/04	53.90	52.42	
5,583.89				02/10/04	53.70	52.22	
5,584.30				03/28/04	53.29	51.81	
5,584.59				04/12/04	53.00	51.52	
5,584.87				05/13/04	52.72	51.24	

		vv mu	e iviesa ivii				
					Total or	(T) - 4 - 1	
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of		Water	Water	Depth Of
<u>(WL)</u>	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,636.11	5,637.59	1.48				121.33
5,584.96				06/18/04	52.63	51.15	
5,585.50				07/28/04	52.09	50.61	
5,584.81				08/30/04	52.78	51.30	
5,584.40				09/16/04	53.19	51.71	
5,583.91				10/11/04	53.68	52.20	
5,583.39				11/16/04	54.20	52.72	
5,583.54				12/22/04	54.05	52.57	
5,583.34				01/18/05	54.25	52.77	
5,583.66				02/28/05	53.93	52.45	
5,583.87				03/15/05	53.72	52.24	
5,584.74				04/26/05	52.85	51.37	
5,585.26				05/24/05	52.33	50.85	
5,585.06				06/30/05	52.53	51.05	
5,584.67				07/29/05	52.92	51.44	
5,584.75				09/12/05	52.84	51.36	
5,584.51				12/07/05	53.08	51.60	
5,585.74				03/08/06	51.85	50.37	
5,584.74				06/13/06	52.85	51.37	
5,584.26				07/18/06	53.33	51.85	
5,584.21				11/07/06	53.38	51.90	
5,584.67				02/27/07	52.92	5 1. 44	
5,584.06				05/02/07	53.53	52.05	
5,585.33				08/14/07	52.26	50.78	
5,585.42				10/10/07	52.17	50.69	
5,587.01				03/26/08	50.58	49.10	
5,585.44				06/24/08	52.15	50.67	
5,585.23				08/26/08	52.36	50.88	
5,584.42				10/14/08	53.17	51.69	
5,583.59				03/03/09	54	52.52	
5,583.35				06/24/09	54.24	52.76	
5,582.91				09/10/09	54.68	53.20	
5,583.43				12/11/09	54.16	52.68	
5,584.00				03/11/10	53.59	52.11	
5,583.27				05/11/10	54.32	52.84	
5,582.92				09/29/10	54.67	53.19	
5,583.08				12/21/10	54.51	53.03	
5,582.63				02/28/11	54.96	53.48	
0,002.00				02/20/11	00	22.10	

		Measuring			Total or Measured		
Water	Land	Point			Depth to	Total Depth	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	to Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,631.99	5,634.24	2.25		(011111)	(0111202)	121.33
5,576.75	0,002.000			01/03/02	57.49	55.24	
5,576.92				02/06/02	57.32	55.07	
5,577.43				03/26/02	56.81	54.56	
5,577.22				04/09/02	57.02	54.77	
5,577.80				05/23/02	56.44	54.19	
5,577.47				06/05/02	56.77	54.52	
5,577.55				07/08/02	56.69	54.44	
5,578.10				08/23/02	56.14	53.89	
5,578.24				09/11/02	56.00	53.75	
5,578.49				10/23/02	55.75	53.50	
5,578.43				11/22/02	55.81	53.56	
5,578.43				12/03/02	55.81	53.56	
5,578.66				01/09/03	55.58	53.33	
5,578.66				02/12/03	55.58	53.33	
5,578.78				03/26/03	55.46	53.21	
5,578.90				04/02/03	55.34	53.09	
5,578.83				05/01/03	55.41	53.16	
5,578.05				06/09/03	56.19	53.94	
5,577.38				07/07/03	56.86	54.61	
5,577.15				08/04/03	57.09	54.84	
5,576.76				09/11/03	57.48	55.23	
5,576.36				10/02/03	57.88	55.63	
5,576.05				11/07/03	58.19	55.94	
5,576.20				12/03/03	58.04	55.79	
5,577.43				01/15/04	56.81	54.56	
5,577.81				02/10/04	56.43	54.18	
5,578.47				03/28/04	55.77	53.52	
5,578.69				04/12/04	55.55	53.30	
5,578.93				05/13/04	55.31	53.06	
5,578.99				06/18/04	55.25	53.00	
5,579.18				07/28/04	55.06	52.81	
5,579.06				08/30/04	55.18	52.93	
5,578.78				09/16/04	55.46	53.21	
5,577.80				10/11/04	56.44	54.19	
5,577.13				11/16/04	57.11	54.86	
5,576.96				12/22/04	57.28	55.03	
5,576.63				01/18/05	57.61	55.36	
5,576.82				02/28/05	57.42	55.17	
5,576.86				03/15/05	57.38	55.13	
5,577.52				04/26/05	56.72	54.47	
5,578.01				05/24/05	56.23	53.98	
5,578.15				06/30/05	56.09	53.84	
5,577.90				07/29/05	56.34	54.09	

Water Elevation (WL)	Land Surface (LSD)	Measuring Point Elevation (MP)	Length Of Riser (L)	Date Of Monitoring	Total or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well
	5,631.99	5,634.24	2.25				121.33
5,578.02				09/12/05	56.22	53.97	
5,577.56				12/07/05	56.68	54.43	
5,579.69				03/08/06	54.55	52.30	
5,578.34				06/13/06	55.90	53.65	
5,577.94				07/18/06	56.30	54.05	
5,578.01				11/07/06	56.23	53.98	
5578.43				02/27/07	55.81	53.56	
5,577.84				05/02/07	56.40	54.15	
5,578.74				08/14/07	55.50	53.25	
5,579.04				10/10/07	55.20	52.95	
5,580.69				03/26/08	53.55	51.30	
5,579.87				06/24/08	54.37	52.12	
5,579.47				08/26/08	54.77	52.52	
5,578.87				10/14/08	55.37	53.12	
5,578.01				03/10/09	56.23	53.98	
5,577.85				06/24/09	56.39	54.14	
5,577.49				09/10/09	56.75	54.50	
5,577.98				12/11/09	56.26	54.01	
5,578.38				03/11/10	55.86	53.61	
5,578.16				05/11/10	56.08	53.83	
5,577.85				09/29/10	56.39	54.14	
5,577.28				12/21/10	56.96	54.71	
5,577.14				02/28/11	57.1	54.85	

		1			Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)		(blw.MP)	(blw.LSD)	Well
<u>`</u>	5,621.92	5,623.62	1.70		<u> </u>		121.33
5,548.32		1		01/03/02	75.30	73.60	
5,548.73				02/06/02	74.89	73.19	
5,549.03		e e		03/26/02	74.59	72.89	
5,548.84				04/09/02	74.78	73.08	
5,549.30				05/23/02	74.32	72.62	
5,549.01				06/05/02	74.61	72.91	
5,549.22				07/08/02	74.40	72.70	
5,549.44				08/23/02	74.18	72.48	
5,549.57				09/11/02	74.05	72.35	
5,549.64		ļ		10/23/02	73.98	72.28	
5,549.58		ļ		11/22/02	74.04	72.34	
5,549.62				12/03/02	74.00	72.30	
5,549.85				01/09/03	73.77	72.07	
5,549.91		1		02/12/03	73.71	72.01	
5,550.15				03/26/03	73.47	71.77	
5,550.01				04/02/03	73.61	71.91	
5,550.31				05/01/03	73.31	71.61	
5,550.44		1		06/09/03	73.18	71.48	
5,550.33				07/07/03	73.29	71.59	
5,550.35				08/04/03	73.27	71.57	
5,550.44				09/11/03	73.18	71.48	
5,550.47		1		10/02/03	73.15	71.45	
5,550.60				11/07/03	73.02	71.32	
5,550.60				12/03/03	73.02	71.32	
5,550.94				01/15/04	72.68	70.98	
5,551.00				02/10/04	72.62	70.92	
5,550.34				03/28/04	73.28	71.58	
5,551.54		1		04/12/04	72.08	70.38	
5,551.89				05/13/04	71.73	70.03	
5,551.94				06/18/04	71.68	69.98	
5,552.49				07/28/04	71.13	69.43	
5,552.74				08/30/04	70.88	69.18	
5,553.01				09/16/04	70.61	68.91	
5,553.11		 		10/11/04	70.51	68.81	
5,553.19				11/16/04	70.43	68.73	
5,553.53				12/22/04	70.09	68.39	
5,553.31				01/18/05	70.31	68.61	
5,553.84				02/28/05	69.78	68.08	
5,554.04				03/15/05	69.58	67.88	
5,554.23				04/26/05	69.39	67.69	
5,553.87				05/24/05	69.75	68.05	
5,554.46				06/30/05	69.16	67.46	
5,554.57				07/29/05	69.05	67.35	

÷

Water Elevation (WL)	Land Surface (LSD) 5,621.92	Measuring Point Elevation (MP) 5,623.62	Length Of Riser (L) 1.70	Date Of Monitoring	Total or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well 121.33
5 552 87	5,021.92	3,023.02	1.70	00/10/05	(0.7)	68.06	121.55
5,553.86				09/12/05	69.76	68.06	
5,555.30				12/07/05	68.32	66.62	
5,556.20				03/08/06	67.42	65.72	
5,556.48				06/14/06	67.14	65.44	
5,556.37				07/18/06	67.25	65.55	
5,556.94				11/07/06	66.68	64.98	
5557.92				02/27/07	65.7	64	
5,557.84			-	05/02/07	65.78	64.08	
5,558.02				08/15/07	65.60	63.90	
5,557.13				10/10/07	66.49	64.79	
5,569.74				03/26/08	53.88	52.18	
5,561.01				06/24/08	62.61	60.91	
5,562.07				08/26/08	61.55	59.85	
5,562.47				10/14/08	61.15	59.45	
5,563.80				03/10/09	59.82	58.12	
5,564.27				06/24/09	59.35	57.65	
5,564.32				09/10/09	59.3	57.60	
5,564.70				12/11/09	58.92	57.22	
5,565.14				03/11/10	58.48	56.78	
5,565.61				05/11/10	58.01	56.31	
5,565.67				09/29/10	· 57.95	56.25	
5,565.62				12/21/10	58	56.30	
5,565.42				02/28/11	58.2	56.50	

					Water Levels and Data over Time White Mesa Mill - Well TW4-12							
Water Elevation (WL)	Land Surface (LSD)	Measuring Point Elevation (MP)	Length Of Riser (L)	Date Of Monitoring	Total or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well					
	5,622.38	5,624.03	1.65				121.33					
5,580.71		;		08/23/02	43.32	41.67						
5,581.34				09/11/02	42.69	41.04						
5,581.13				10/23/02	42.90	41.25						
5,581.27		•		11/22/02	42.76	41.11						
5,581.35		1		12/03/02	42.68	41.03						
5,582.38				01/09/03	41.65	40.00						
5,582.27				02/12/03	41.76	40.11						
5,582.51				03/26/03	41.52	39.87						
5,581.91				04/02/03	42.12	40.47						
5,582.72				05/01/03	41.31	39.66						
5,582.93				06/09/03	41.10	39.45						
5,583.01		1		07/07/03	41.02	39.37						
5,583.11		1		08/04/03	40.92	39.27						
5,583.35		1		09/11/03	40.68	39.03						
5,583.52				10/02/03	40.51	38.86						
5,583.57				11/07/03	40.46	38.81						
5,583.81		Į		12/03/03	40.22	38.57						
5,584.17				01/15/04	39.86	38.21						
		1		02/10/04	39.84	38.19						
5,584.19				03/28/04	39.72	38.07						
5,584.31					39.72	37.68						
5,584.70		(04/12/04		37.08						
5,584.68		i		05/13/04	39.35							
5,584.73		ļ		06/18/04	39.30	37.65						
5,585.16				07/28/04	38.87	37.22						
5,585.18				08/30/04	38.85	37.20						
5,585.29		t		09/16/04	38.74	37.09						
5,585.65		1		10/11/04	38.38	36.73						
5,585.71		1		11/16/04	38.32	36.67						
5,586.15				12/22/04	37.88	36.23						
5,585.94				01/18/05	38.09	36.44						
5,586.36		1		02/28/05	37.67	36.02						
5,586.75		1		03/15/05	37.28	35.63						
5,587.00		ļ		04/26/05	37.03	35.38						
5,587.15		1		05/24/05	36.88	35.23						
5,587.38		l t		06/30/05	36.65	35.00						
5,587.38				07/29/05	36.65	35.00						
5,587.74		1		09/12/05	36.29	34.64						
5,588.23		1		12/07/05	35.80	34.15						
5,588.72				03/08/06	35.31	33.66						
5,588.14		I		06/13/06	35.89	34.24						
5,588.13				07/18/06	35.90	34.25						
5,584.50		ļ		11/07/06	39.53	37.88						
5588.65		1		02/27/07	35.38	33.73						

Water Levels and Data over Time

ì

Water Elevation (WL)	Land Surface (LSD) 5,622.38	Measuring Point Elevation (MP) 5,624.03	Length Of Riser (L) 1.65	Date Of Monitoring	Total or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well 121.33
5,588.33		,		05/02/07	35.70	34.05	
5,586.29				08/14/07	37.74	36.09	
5,586.48				10/10/07	37.55	35.90	
5,587.56				03/26/08	36.47	34.82	
5,587.39				06/24/08	36.64	34.99	
5,587.15				08/26/08	36.88	35.23	
5,586.64				10/14/08	37.39	35.74	
5,585.97				03/03/09	38.06	36.41	
5,585.54				06/24/09	38.49	36.84	
5,585.34				09/10/09	38.69	37.04	
5,585.57				12/11/09	38.46	36.81	
5,585.68				03/11/10	38.35	36.70	
5,586.15				05/11/10	37.88	36.23	
5,585.48				09/29/10	38.55	36.90	
5,584.89				12/21/10	39.14	37.49	
5,584.45				02/28/11	39.58	37.93	

		1		i Data over				
White Mesa Mill - Well TW4-13								
Water Elevation (WL)	Land Surface (LSD)	Measuring Point Elevation (MP)	Length Of Riser (L)	Date Of Monitoring	Total or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well	
	5,618.09	5,619.94	1.85		<u>`</u>		121.33	
5,529.66				08/23/02	90.28	88.43		
5,530.66				09/11/02	89.28	87.43		
5,529.10				10/23/02	90.84	88.99		
5,530.58				11/22/02	89.36	87.51		
5,530.61				12/03/02	89.33	87.48		
5,529.74				01/09/03	90.20	88.35		
5,531.03		1		02/12/03	88.91	87.06		
5,531.82				03/26/03	88.12	86.27		
5,524.63				04/02/03	95.31	93.46		
5,531.54				05/01/03	88.40	86.55		
5,531.54 5,538.46		1		06/09/03	81.48	79.63		
5,539.38				07/07/03	80.56	79.03		
5,539.58 5,540.72				08/04/03	79.22	77.37		
				08/04/03	78.69	76.84		
5,541.25				10/02/03	78.60	76.75		
5,541.34					78.00	76.40		
5,541.69				11/07/03				
5,541.91				12/03/03	78.03	76.18		
5,542.44				01/15/04	77.50	75.65		
5,542.47				02/10/04	77.47	75.62		
5,542.84				03/28/04	77.10	75.25		
5,543.08		1		04/12/04	76.86	75.01		
5,543.34				05/13/04	76.60	74.75		
5,543.40		ì		06/18/04	76.54	74.69		
5,544.06				07/28/04	75.88	74.03		
5,544.61				08/30/04	75.33	73.48		
5,545.23				09/16/04	74.71	72.86		
5,546.20				10/11/04	73.74	71.89		
5,547.43				11/16/04	72.51	70.66		
5,548.96		1		12/22/04	70.98	69.13		
5,549.02		1		01/18/05	70.92	69.07		
5,550.66		ļ		02/28/05	69.28	67.43		
5,551.26				03/15/05	68.68	66.83		
5,552.23		1		04/26/05	67.71	65.86		
5,552.87		1		05/24/05	67.07	65.22		
5,553.42		1		06/30/05	66.52	64.67		
5,554.00				07/29/05	65.94	64.09		
5,555.21				09/12/05	64.73	62.88		
5,558.13		1		12/07/05	61.81	59.96		
5,562.93				03/08/06	57.01	55.16		
5,564.39		1		06/13/06	55.55	53.70		
5,562.09		1		07/18/06	57.85	56.00		
				11/07/06	54.45	52.60		
5,565.49		1		02/27/07	48.86	47.01		
5571.08				02/21/07	40.00	- 1 7.01		

I

Water Levels and Data over Time White Mesa Mill - Well TW4-13

ŗ

.

Water Elevation	Land Surface	Measuring Point Elevation	Length Of	Date Of	Total or Measured Depth to Water	Total Depth to Water	Total Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring		(blw.LSD)	Well
	5,618.09	5,619.94	1.85		()_		121.33
5,570.63				05/02/07	49.31	47.46	
5,565.24				08/14/07	54.7	52.85	
5,565.83				10/10/07	54.11	52.26	
5,569.29				03/26/08	50.65	48.80	
5,570.00				06/24/08	49.94	48.09	
5,570.41				08/26/08	49.53	47.68	
5,570.64				10/14/08	49.3	47.45	
5,570.43				03/03/09	49.51	47.66	
5,570.56				06/24/09	49.38	47.53	
5,570.42				09/10/09	49.52	47.67	
5,571.15				12/11/09	48.79	46.94	
5,572.01				03/11/10	47.93	46.08	
5,572.88				05/11/10	47.06	45.21	
5,573.17				09/29/10	46.77	44.92	
5,573.14				12/21/10	46.8	44.95	
5,573.10				02/28/11	46.84	44.99	

				Data over - Well TW			
		** mite	171034 17111		Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,610.92	5,612.77	1.85	_			121.33
5,518.90		1		08/23/02	93.87	92.02	
5,519.28		1		09/11/02	93.49	91.64	
5,519.95		1		10/23/02	92.82	90.97	
5,520.32				11/22/02	92.45	90.60	
5,520.42				12/03/02	92.35	90.50	
5,520.70				01/09/03	92.07	90.22	
5,520.89				02/12/03	91.88	90.03	
5,521.12				03/26/03	91.65	89.80	
5,521.12				04/02/03	91.65	89.80	
5,521.24				05/01/03	91.53	89.68	
5,521.34				06/09/03	91.43	89.58	
5,521.36				07/07/03	91.41	89.56	
5,521.35				08/04/03	91.42	89.57	
5,521.30		1		09/11/03	91.47	89.62	
5,521.35		1		10/02/03	91.42	89.57	
5,521.36		1		11/07/03	91.41	89.56	
5,521.16				12/03/03	91.61	89.76	
5,521.29				01/15/04	91.48	89.63	
5,521.36				02/10/04	91.41	89.56	
5,521.46				03/28/04	91.31	89.46	
5,521.54				04/12/04	91.23	89.38	
5,521.59				05/13/04	91.18	89.33	
5,521.69				06/18/04	91.08	89.23	
5,521.71		1		07/28/04	91.06	89.21	
5,521.76				08/30/04	91.01	89.16	
5,521.77				09/16/04	91.00	89.15	
5,521.79		İ		10/11/04	90.98	89.13	
5,521.80				11/16/04	90.97	89.12	
5,521.82				12/22/04	90.95	89.10	
5,521.82				01/18/05	90.95	89.10	
5,521.86				02/28/05	90.91	89.06	
5,521.85				03/15/05	90.92	89.07	
5,521.91				04/26/05	90.86	89.01	
5,521.93				05/24/05	90.84	88.99	
5,521.94				06/30/05	90.83	88.98	
5,521.84				07/29/05	90.93	89.08	
5,521.99		1		09/12/05	90.78	88.93	
5,522.04		1		12/07/05	90.73	88.88	
5,522.05				03/08/06	90.72	88.87	
5,522.27				06/13/06	90.50	88.65	
5,521.92		1		07/18/06	90.85	89.00	
5,520.17				11/07/06	92.60	90.75	
5522.24				02/27/07	90.53	88.68	

Water Elevation (WL)	Land Surface (LSD) 5,610.92	Measuring Point Elevation (MP) 5,612.77	Length Of Riser (L) 1.85	Date Of Monitoring	Total or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well 121.33
5 500 47	5,010.92	5,012.77	1.65	05/02/07	90.30	88.45	121.00
5,522.47				05/02/07			
5,520.74				08/14/07	92.03	90.18	
5,518.13				10/10/07	94.64	92.79	
5,522.85				03/26/08	89.92	88.07	
5,522.91				06/24/08	89.86	88.01	
5,523.01				08/26/08	89.76	87.91	
5,522.96				10/14/08	89.81	87.96	
5,523.20				03/03/09	89.57	87.72	
5,523.33				06/24/09	89.44	87.59	
5,523.47				09/10/09	89.3	87.45	
5,523.54				12/11/09	89.23	87.38	
5,522.98				03/11/10	89.79	87.94	
5,524.01				05/11/10	88.76	86.91	
5,524.37				09/29/10	88.40	86.55	
5,524.62				12/21/10	88.15	86.30	
5,524.78				02/28/11	87.99	86.14	

		vv nite	e iviesa ivin				
					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,624.15	5,625.45	1.30				121.33
5,574.75				08/23/02	50.70	49.40	
5,574.97				09/11/02	50.48	49.18	
5,575.10				10/23/02	50.35	49.05	
5,574.99				11/22/02	50.46	49.16	
5,575.28				12/03/02	50.17	48.87	
5,575.41				01/09/03	50.04	48.74	
5,575.43				02/12/03	50.02	48.72	
5,575.63				03/26/03	49.82	48.52	
5,575.91				04/02/03	49.54	48.24	
5,575.81				05/01/03	49.64	48.34	
5,572.36				06/09/03	53.09	51.79	
5,570.70				07/07/03	54.75	53.45	
5,570.29				08/04/03	55.16	53.86	
5,560.94				09/11/03	64.51	63.21	
5,560.63				10/02/03	64.82	63.52	
5,560.56				11/07/03	64.89	63.59	
5,564.77				12/03/03	60.68	59.38	
5,570.89				01/15/04	54.56	53.26	
5,572.55				02/10/04	52.90	51.60	
5,574.25				03/28/04	51.20	49.90	
5,574.77				04/12/04	50.68	49.38	
5,575.53				05/13/04	49.92	48.62	
5,575.59				06/18/04	49.86	48.56	
5,576.82				07/28/04	48.63	47.33	
5,527.47				09/16/04	97.98	96.68	
5,553.97				11/16/04	71.48	70.18	
5,562.33				12/22/04	63.12	61.82	
5,550.00				01/18/05	75.45	74.15	
5,560.02				04/26/05	65.43	64.13	
5,546.11				05/24/05	79.34	78.04	
5,556.71				06/30/05	68.74	67.44	
5,554.95				07/29/05	70.50	69.20	
5,555.48				09/12/05	69.97	68.67	
5,551.09				12/07/05	74.36	73.06	
5,552.85				03/08/06	72.60	71.30	
5,554.30				06/13/06	71.15	69.85	
5,554.87				07/18/06	70.58	69.28	
5,550.88				11/07/06	74.57	73.27	
5558.77				02/27/07	66.68	65.38	
5,548.54				05/02/07	76.91	75.61	
5,551.33				10/10/07	74.12	72.82	
5,545.56				03/26/08	79.89	78.59	
5,545.56				06/25/08	79.89	78.59	
-,				00/20/00			

		White	e Mesa Mil	ll - Well M	W-26		
Water Elevation (WL)	Land Surface (LSD)	Measuring Point Elevation (MP)	Length Of Riser (L)	Date Of Monitoring	Total or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well
	5,624.15	5,625.45	1.30				121.33
5,545.82				08/26/08	79.63	78.33	
5,545.64				10/14/08	79.81	78.51	
5,544.45				03/03/09	81.00	79.70	
5,545.32				06/24/09	80.13	78.83	
5,544.61				09/10/09	80.84	79.54	
5,549.33				12/11/09	76.12	74.82	
5,543.78				03/11/10	81.67	80.37	
5,545.61				05/11/10	79.84	78.54	
5,547.43				09/29/10	78.02	76.72	
5,544.14				12/21/10	81.31	80.01	
5,546.77				02/28/11	78.68	77.38	

-. .

		vy nite	e mesa min	u - wen i w			
Water	Land	Measuring Point			Total or Measured Depth to	Total Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
-	5,622.19	5,624.02	1.83				121.33
5,562.91				08/23/02	61.11	59.28	
5,563.45				09/11/02	60.57	58.74	
5,563.75				10/23/02	60.27	58.44	
5,563.68				11/22/02	60.34	58.51	
5,563.68				12/03/02	60.34	58.51	
5,564.16				01/09/03	59.86	58.03	
5,564.25				02/12/03	59.77	57.94	
5,564.53				03/26/03	59.49	57.66	
5,564.46				04/02/03	59.56	57.73	
5,564.79				05/01/03	59.23	57.40	
5,564.31				06/09/03	59.71	57.88	
5,563.29				07/07/03	60.73	58.90	
5,562.76				08/04/03	61.26	59.43	
5,561.73				09/11/03	62.29	60.46	
5,561.04				10/02/03	62.98	61.15	
5,560.39				11/07/03	63.63	61.80	
5,559.79				12/03/03	64.23	62.40	
5,561.02				01/15/04	63	61.17	
5,561.75				02/10/04	62.27	60.44	
5,562.98				03/28/04	61.04	59.21	
5,563.29				04/12/04	60.73	58.90	
5,564.03				05/13/04	59.99	58.16	
5,564.09				06/18/04	59.93	58.10	
5,565.08				07/28/04	58.94	57.11	
5,564.56				08/30/04	59.46	57.63	
5,563.55				09/16/04	60.47	58.64	
5,561.79				10/11/04	62.23	60.40	
5,560.38				11/16/04	63.64	61.81	
5,559.71				12/22/04	64.31	62.48	
5,559.14				01/18/05	64.88	63.05	
5,558.65				02/28/05	65.37	63.54	
5,558.54				03/15/05	65.48	63.65	
5,558.22				04/26/05	65.8	63.97	
5,558.54				05/24/05	65.48	63.65	
5,559.24				06/30/05	64.78	62.95	
5,559.38				07/29/05	64.64	62.81	
5,559.23				09/12/05	64.79	62.96	
5,557.67				12/07/05	66.35	64.52	
5,557.92				03/08/06	66.10	64.27	
5,558.47				06/13/06	65.55	63.72	
5,558.42				07/18/06	65.60	63.77	
5,558.09				11/07/06	65.93	64.10	
5557.34				02/27/07	66.68	64.85	
5557.57				02/21/01	00.00	01.05	

Water Elevation (WL)	Land Surface (LSD) 5,622.19	Measuring Point Elevation (MP) 5,624.02	Length Of Riser (L) 1.83	Date Of Monitoring	Total or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well 121.33
E 547 11	5,022.19	3,024.02	1.65	05/02/07	7(01	75.00	121.55
5,547.11				05/02/07	76.91	75.08	
5,558.52				08/14/07	65.5	63.67	-
5,559.02				10/10/07	65.00	63.17	
5,561.04				03/26/08	62.98	61.15	
5,560.06				06/24/08	63.96	62.13	
5,559.32				08/26/08	64.7	62.87	
5,558.89				10/14/08	65.13	63.30	
5,558.40				03/03/09	65.62	63.79	
5,558.32				06/24/09	65.7	63.87	
5,558.03				09/10/09	65.99	64.16	
5,558.81				12/11/09	65.21	63.38	
5,559.80				03/11/10	64.22	62.39	
5,559.85				05/11/10	64.17	62.34	
5,560.54				09/29/10	63.48	61.65	
5,558.65				12/21/10	65.37	63.54	
5,559.26				02/28/11	64.76	62.93	

	White Mesa Mill - Well MW-32									
Water Elevation (WL)	Land Surface (LSD)	Measuring Point Elevation (MP)	Length Of Riser (L)	Date Of Monitoring	Total or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well			
(5,623.41	5,625.24	1.83	<u>.</u>	<u>``</u>		121.33			
5,542.17		•,•==•=•		08/23/02	83.07	81.24				
5,542.39				09/11/02	82.85	81.02				
5,542.61				10/23/02	82.63	80.80				
5,542.49				11/22/02	82.75	80.92				
5,542.82				12/03/02	82.42	80.59				
5,543.03				01/09/03	82.21	80.38				
5,543.04				02/12/03	82.20	80.37				
5,543.41				03/26/03	81.83	80.00				
5,543.69				04/02/03	81.55	79.72				
5,543.77				05/01/03	81.47	79.64				
5,544.01				06/09/03	81.23	79.40				
5,544.05				07/07/03	81.19	79.36				
5,543.99				08/04/03	81.25	79.42				
5,544.17				09/11/03	81.07	79.24				
5,544.06				10/02/03	81.18	79.35				
5,544.03				11/07/03	81.21	79.38				
5,543.94				12/03/03	81.30	79.47				
5,543.98				01/15/04	81.26	79.43				
5,543.85				02/10/04	81.39	79.56				
5,544.05				03/28/04	81.19	79.36				
5,544.33				04/12/04	80.91	79.08				
5,544.55				05/13/04	80.69	78.86				
5,544.59				06/18/04	80.65	78.82				
5,545.08				07/28/04	80.16	78.33				
5,545.26				08/30/04	79.98	78.15				
5,545.48				09/16/04	79.76	77.93				
5,545.61				10/11/04	79.63	77.80				
5,545.46				11/16/04	79.78	77.95				
5,545.66				12/22/04	79.58	77.75				
5,545.33				01/18/05	79.91	78.08				
5,545.51				02/28/05	79.73	77.90				
5,545.57				03/15/05	79.67	77.84				
5,545.46				04/26/05	79.78	77.95				
5,545.45				05/24/05	79.79	77.96				
5,545.33				06/30/05	79.91	78.08				
5,545.16				07/29/05	80.08	78.25				
5,545.54				09/12/05	79.70	77.87				
5,545.77				12/07/05	79.47	77.64				
5,546.09				03/08/06	79.15	77.32				
5,545.94				06/13/06	79.30	77.47				
				07/18/06	79.30	77.47				
5.545.94										
5,545.94 5,546.24				11/07/06	79.00	77.17				

Water Elevation (WL)	Land Surface (LSD) 5,623.41	Measuring Point Elevation (MP) 5,625.24	Length Of Riser (L)	Date Of Monitoring	Total or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well 121.33
5546.56				05/02/07	78.68	76.85	
5546.81				08/15/07	78.43	76.6 ·	
5546.96				10/10/07	78.28	76.45	
5547.9				03/26/08	77.34	75.51	
5548.08				06/25/08	77.16	75.33	
5548.42				08/26/08	76.82	74.99	
5548.05				10/14/08	77.19	75.36	
5548.29				03/03/09	76.95	75.12	
5548.09				06/24/09	77.15	75.32	
5547.79				09/10/09	77.45	75.62	
5548.09				12/11/09	77.15	75.32	
5,548.50				03/11/10	76.74	74.91	
5,548.89				05/11/10	76.35	74.52	
5,548.83				09/29/10	76.41	74.58	
5,548.97				12/21/10	76.27	74.44	
5,548.68				02/28/11	76.56	74.73	

White Mesa Mill - Well TW4-18										
Water	Land	Measuring Point			Total or Measured Depth to	Total Depth to	Total			
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of			
<u>(WL)</u>	(LSD)	<u>(MP)</u>	<u>`</u>	Monitoring	(blw.MP)	(blw.LSD)	Well			
	5,639.13	5,641.28	2.15				121.33			
5,585.13				08/23/02	56.15	54.00				
5,585.41				09/11/02	55.87	53.72				
5,585.47				10/23/02	55.81	53.66				
5,585.40				11/22/02	55.88	53.73				
5,585.68				12/03/02	55.60	53.45				
5,585.90				01/09/03	55.38	53.23				
5,590.79				02/12/03	50.49	48.34				
5,586.18				03/26/03	55.10	52.95				
5,586.36				04/02/03	54.92	52.77				
5,586.24				05/01/03	55.04	52.89				
5,584.93				06/09/03	56.35	54.20				
5,584.46				07/07/03	56.82	54.67				
5,584.55				08/04/03	56.73	54.58				
5,584.01				09/11/03	57.27	55.12				
5,583.67				10/02/03	57.61	55.46				
5,583.50				11/07/03	57.78	55.63				
5,584.08				12/03/03	57.20	55.05				
5,585.45				01/15/04	55.83	53.68				
5,585.66				02/10/04	55.62	53.47				
5,586.13				03/28/04	55.15	53.00				
5,586.39				04/12/04	54.89	52.74				
5,586.66				05/13/04	54.62	52.47				
5,586.77				06/18/04	54.51	52.36				
5,587.35				07/28/04	53.93	51.78				
5,586.34				08/30/04	54.94	52.79				
5,585.85				09/16/04	55.43	53.28				
5,585.22				10/11/04	56.06	53.91				
5,584.70				11/16/04	56.58	54.43				
5,584.81				12/22/04	56.47	54.32				
5,584.68				01/18/05	56.60	54.45				
5,585.02				02/28/05	56.26	54.11				
5,585.25				03/15/05	56.03	53.88				
5,586.31				04/26/05	54.97	52.82				
5,586.97				05/24/05	54.31	52.16				
5,586.58				06/30/05	54.70	52.55				
5,586.10				07/29/05	55.18	53.03				
5,586.05				09/12/05	55.23	53.08				
5,585.86				12/07/05	55.42	53.27				
5,587.13				03/08/06	54.15	52.00				
5,585.93				06/13/06	55.35	53.20				
5,585.40				07/18/06	55.88	53.73				
5,585.38				11/07/06	55.90	53.75				

1

: 1

Water Elevation (WL)	Land Surface (LSD) 5,639.13	Measuring Point Elevation (MP) 5,641.28	Length Of Riser (L) 2.15	Date Of Monitoring	Total or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well 121.33
5585.15				05/02/07	56.13	53.98	
5586.47				06/24/08	54.81	52.66	
5586.3				08/26/08	54.98	52.83	
5585.21				10/14/08	56.07	53.92	
5584.47				03/03/09	56.81	54.66	
5584.35				06/24/09	56.93	54.78	
5583.88				09/10/09	57.4	55.25	
5584.43				12/11/09	56.85	54.70	
5,585.26				03/11/10	56.02	53.87	
5,584.17				05/11/10	57.11	54.96	
5,583.61				09/29/10	57.67	55.52	
5,604.29				12/21/10	36.99	34.84	
5,583.56				02/28/11	57.72	55.57	

		W	/hite Mesa	n Mill - Wel	TW4-19		
					Total or		
		Measuring			Measured		
Water	Land	Point			Depth to	Total Depth	
Elevation	Surface	Elevation	Length Of	Date Of	Water	to Water	Total Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
·	5,629.53	5,631.39	1.86				121.33
5,581.88				08/23/02	49.51	47.65	
5,582.14				09/11/02	49.25	47.39	
5,582.06				10/23/02	49.33	47.47	
5,582.07				11/22/02	49.32	47.46	
5,582.16				12/03/02	49.23	47.37	
5,582.28				01/09/03	49.11	47.25	
5,582.29				02/21/03	49.10	47.24	
5,582.74				03/26/03	48.65	46.79	
5,582.82				04/02/03	48.57	46.71	
5,548.47				05/01/03	82.92	81.06	
5,564.76				06/09/03	66.63	64.77	
5,562.53				07/07/03	68.86	67.00	
5,564.10				08/04/03	67.29	65.43	
5,566.01				08/30/04	65.38	63.52	
5,555.16				09/16/04	76.23	74.37	
5,549.80				10/11/04	81.59	79.73	
5,546.04				11/16/04	85.35	83.49	
5,547.34				12/22/04	84.05	82.19	
5,548.77				01/18/05	82.62	80.76	
5,551.18				02/28/05	80.21	78.35	
5,556.81				03/15/05	74.58	72.72	
5,562.63				04/26/05	68.76	66.90	
5,573.42				05/24/05	57.97	56.11	
5,552.94				07/29/05	78.45	76.59	
5,554.00				09/12/05	77.39	75.53	
5,555.98				12/07/05	75.41	73.55	
5,552.00				03/08/06	79.39	77.53	
5,545.74				06/13/06	85.65	83.79	
5,544.06				07/18/06	87.33	85.47	
5,548.81				11/07/06	82.58	80.72	
5543.59				02/27/07	87.8	85.94	
5544.55				05/02/07	86.84	84.98	
5558.97				08/15/07	72.42	70.56	
5559.73				10/10/07	71.66	69.8	
5569.26				03/26/08	62.13	60.27	
5535.47				06/25/08	95.92	94.06	
5541.41				08/26/08	89.98	88.12	
5558.45				10/14/08	72.94	71.08	
5536.9				03/03/09	94.49	92.63	
5547.76				06/24/09	83.63	81.77	,
5561.48				09/10/09	69.91	68.05	
5548.14				12/11/09	83.25	81.39	
5,570.58				03/11/10	60.81	58.95	

Water Levels and Data over Time White Mesa Mill - Well TW4-19

				s and Data Mill - Wel				
Water Elevation (WL)	Land Surface (LSD)	Measuring Point Elevation (MP)	Length Of Riser (L)	Date Of Monitoring			Total Depth Of Well	
	5,629.53	5,631.39	1.86				121.33	
5,561.35				05/11/10	70.04	68.18		
5,535.26				09/29/10	96.13	94.27		
5,568.40				12/21/10	62.99	61.13		
5,550.36				02/28/11	81.03	79.17		

Water Elevation (WL)	Land Surface (LSD)	Measuring Point Elevation (MP)	Length Of Riser (L)	Date Of Monitoring	Total or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well
(111)	5,628.52	5,629.53	1.01	Monitoring			106.0
5,565.70	- ,			07/29/05	63.83	62.82	
5,546.53				08/30/05	83.00	81.99	
5,540.29				09/12/05	89.24	88.23	
5,541.17				12/07/05	88.36	87.35	
5,540.33				03/08/06	89.20	88.19	
5,530.43				06/13/06	99.10	98.09	
5,569.13				07/18/06	60.40	59.39	
5,547.95				11/07/06	81.58	80.57	
5,549.25				02/27/07	80.28	79.27	
5,550.58				05/02/07	78.95	77.94	
5,563.60				08/14/07	65.93	64.92	
5,555.85				10/10/07	73.68	72.67	
5,569.10				03/26/08	60.43	59.42	
5,560.00				06/25/08	69.53	68.52	
5,539.64				08/26/08	89.89	88.88	
5,539.51				10/14/08	90.02	89.01	
5,553.00				03/03/09	76.53	75.52	
5,534.18				06/24/09	95.35	94.34	
5,558.39				09/10/09	71.14	70.13	
5,560.99				12/11/09	68.54	67.53	
5,564.09				03/11/10	65.44	64.43	
5,564.22				05/11/10	65.31	64.30	
5,560.33				09/29/10	69.20	68.19	
5,561.35				12/21/10	68.18	67.17	
5,560.18				02/28/11	69.35	68.34	

Water Levels and Data over Time White Mesa Mill - Well TW4-20

		White	e Mesa Mil	ц- weii i v	V4-21		
Water Elevation (WL)	Land Surface (LSD) 5,638.20	Measuring Point Elevation (MP) 5,639.35	Length Of Riser (L) 1.15	Date Of Monitoring	Total or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well 120.92
	3,038.20	5,059.55	1.13				120.92
5,582.98				07/29/05	56.37	55.22	
5,583.43				08/30/05	55.92	54.77	
5,581.87				09/12/05	57.48	56.33	
5,580.50				12/07/05	58.85	57.70	
5,583.64				03/08/06	55.71	54.56	
5,580.55				06/13/06	58.80	57.65	
5,578.95				07/18/06	60.40	59.25	
5,578.47				11/07/06	60.88	59.73	
5,579.53				02/27/07	59.82	58.67	
5,578.07				05/02/07	61.28	60.13	
5,583.41				08/15/07	55.94	54.79	
5,583.45				10/10/07	55.9	54.75	
5,586.47				03/26/08	52.88	51.73	
5,579.16				06/24/08	60.19	59.04	
5,579.92				08/26/08	59.43	58.28	
5,577.37				10/14/08	61.98	60.83	
5,578.00				03/10/09	61.35	60.20	
5,580.14				06/24/09	59.21	58.06	
5,578.72				09/10/09	60.63	59.48	
5,579.99				12/11/09	59.36	58.21	
5,582.81				03/11/10	56.54	55.39	
5,582.23				05/11/10	57.12	55.97	
5,576.60				09/29/10	62.75	61.60	
5,581.14				12/21/10	58.21	57.06	

Water Levels and Data over Time White Mesa Mill - Well TW4-21

٠.

		W IIIC	Micsa Mill				
					Total or	(T) = 4 = 1	
		Measuring			Measured	Total	T -4-1
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of		Water	Water	Depth Of
(WL)	(LSD)	<u>(MP)</u>	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,627.83	5,629.00	1.17			· · · · · · · · · · · · · · · · · · ·	113.5
				07/00/07	<i>67</i> 11	55.04	
5,571.89				07/29/05	57.11	55.94	
5,572.20				08/30/05	56.80	55.63	
5,572.08				09/12/05	56.92	55.75	
5,571.61				12/07/05	57.39	56.22	
5,571.85				03/08/06	57.15	55.98	
5,571.62				06/13/06	57.38	56.21	
5,571.42				07/18/06	57.58	56.41	
5,571.02				11/07/06	57.98	56.81	
5571.24				02/27/07	57.76	56.59	
5,570.75				06/29/07	58.25	57.08	
5,571.82				08/14/07	57.18	56.01	
5,571.99				10/10/07	57.01	55.84	
5,573.05				03/26/08	55.95	54.78	
5,573.04				06/24/08	55.96	54.79	
5,573.04				08/26/08	55.96	54.79	
5,573.02				10/14/08	55.98	54.81	
5,573.19				03/10/09	55.81	54.64	
5,573.32				06/24/09	55.68	54.51	
5,573.17				09/10/09	55.83	54.66	
5,573.52				12/11/09	55.48	54.31	
5,573.88				03/11/10	55.12	53.95	
5,574.29				05/11/10	54.71	53.54	
5,574.88				09/29/10	54.12	52.95	
5,574.44				12/21/10	54.56	53.39	
5,574.49				02/28/11	54.51	53.34	

Water Levels and Data over Time White Mesa Mill - Well TW4-22

		White	Nesa Mil	l - Well TV			
					Total or		
	. .	Measuring			Measured	Total	m (1
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of		Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,627.83	5,629.00	1.17				113.5
5,560.52				09/13/07	68.48	67.31	
5,560.43				10/10/07	68.57	67.40	
5,560.88				11/30/07	68.12	66.95	
5,561.12				12/11/07	67.88	66.71	
5,560.82				01/08/08	68.18	67.01	
5,561.07				02/18/08	67.93	66.76	
5,561.17				03/26/08	67.83	66.66	
5,561.34				04/23/08	67.66	66.49	
5561.11				05/30/08	67.89	66.72	
5,561.16				06/24/08	67.84	66.67	
5,561.07				07/16/08	67.93	66.76	
5,561.31				08/26/08	67.69	66.52	
5,562.81				09/10/08	66.19	65.02	
5,561.20				10/14/08	67.8	66.63	
5,560.92				11/26/08	68.08	66.91	
5,561.18				12/29/08	67.82	66.65	
5,561.78				01/26/09	67.22	66.05	
5,561.37				02/24/09	67.63	66.46	
5,561.49				03/06/09	67.51	66.34	
5,561.35				04/07/09	67.65	66.48	
5,561.47				05/29/09	67.53	66.36	
5,561.75				06/30/09	67.25	66.08	
5,561.75				07/31/09	67.25	66.08	
5,561.90				08/31/09	67.1	65.93	
5,561.76				09/10/09	67.24	66.07	
5,562.27				12/11/09	66.73	65.56	
5,562.78				03/11/10	66.22	65.05	
5,563.24				05/11/10	65.76	64.59	
5,563.10				09/29/10	65.90	64.73	
5,563.17				12/21/10	65.83	64.66	
5,563.17				02/28/11	65.83	64.66	

Water Levels and Data over Time

.

		Whit	e Mesa Mi	ll - Well TV	V4-24		
Water Elevation (WL)	Land Surface (LSD)	Measuring Point Elevation (MP)	Length Of Riser (L)	Date Of Monitoring	Total or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth O Well
	5,627.83	5,625.70	-2.13				113.5
E E C O A O				00/10/07	57.00	50 25	
5,568.48				09/13/07	57.22	59.35 59.43	
5,568.40				10/10/07	57.30		
5,569.03				11/30/07	56.67	58.80	
5,569.17				12/11/07	56.53	58.66	
5,568.90				01/08/08	56.80	58.93	
5,569.09				02/18/08	56.61	58.74	
5,569.30				03/26/08	56.40	58.53	
5,569.55				04/23/08	56.15	58.28	
5569.39				05/30/08	56.31	58.44	
5,569.21				06/24/08	56.49	58.62	
5,569.15				07/16/08	56.55	58.68	
5,569.21				08/26/08	56.49	58.62	
5,569.10				09/10/08	56.60	58.73	
5,568.99				10/14/08	56.71	58.84	
5,568.82				11/26/08	56.88	59.01	
5,568.79				12/29/08	56.91	59.04	
5,569.52				01/26/09	56.18	58.31	
5,569.18				02/24/09	56.52	58.65	
5,569.24				03/06/09	56.46	58.59	
5,569.08				04/07/09	56.62	58.75	
5,569.10				05/29/09	56.60	58.73	
5,569.29				06/30/09	56.41	58.54	
5,569.25				07/31/09	56.45	58.58	
5,569.35				08/31/09	56.35	58.48	
5,569.15				09/10/09	56.55	58.68	
5,569.51				12/11/09	56.19	58.32	
5,569.73				03/11/10	55.97	58.10	
5,569.78				05/11/10	55.92	58.05	
5,570.05				09/29/10	55.65	57.78	
5,569.73				12/21/10	55.97	58.10	
5,569.65				02/28/11	56.05	58.18	

Water Levels and Data over Time White Mesa Mill - Well TW4-24

ļ

		White	Mesa Mil	ll - Well TV	V4-25	a .	
Water Elevation (WL)	Land Surface (LSD) 5,627.83	Measuring Point Elevation (MP) 5,644.91	Length Of Riser (L) 17.08		Total or Measured Depth to Water (blw.MP)	Totai Depth to Water (biw.LSD)	Total Depth Of Well 113.5
5 601 86				00/12/07	42.05	25.07	
5,601.86 5,601.89				09/13/07 10/10/07	43.05 43.02	25.97 25.94	
5,602.57				11/30/07	42.34	25.26	
5,602.82				12/11/07	42.34 42.09	25.20	
-							
5,601.94				01/08/08	42.97	25.89	
5,599.13				02/18/08	45.78	28.70	
5,597.11 5,595.51				03/26/08	47.80	30.72 32.32	
5,595.51 5594.42				04/23/08 05/30/08	49.40 50.49	32.32	
5,594.26				05/30/08	50.49 50.65	33.57	
5,586.67				07/16/08	58.24	41.16	
5,594.17				08/26/08	50.74	33.66	
5,594.23				09/10/08	50.68	33.60	
5,594.12				10/14/08	50.79	33.71	
5,594.06				11/26/08	50.85	33.77	
5,594.87				12/29/08	50.04	32.96	
5,595.89				01/26/09	49.02	31.94	
5,596.27				02/24/09	48.64	31.56	
5,596.47				03/06/09	48.44	31.36	
5,596.74				04/07/09	48.17	31.09	
5,597.55				05/29/09	47.36	30.28	
5,598.11				06/30/09	46.8	29.72	
5,598.22				07/31/09	46.69	29.61	
5,598.52				08/31/09	46.39	29.31	
5,598.49				09/10/09	46.42	29.34	
5,599.48				12/11/09	45.43	28.35	
5,599.75				03/11/10	45.16	28.08	
5,599.63				05/11/10	45.28	28.20	
5,598.68				09/29/10	46.23	29.15	
5,598.66				12/21/10	46.25	29.17	
5,598.18				02/28/11	46.73	29.65	

Water Levels and Data over Time

		White	Mesa Mil	l - Well TV	N4-26		
Water Elevation (WL)	Land Surface (LSD)	Measuring Point Elevation (MP)	Length Of Riser (L)	Date Of Monitoring	Total or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well
	5,599.98	5,601.68	1.70				86
5,536.90 5,536.95				06/14/10 09/29/10	64.78 64.73	63.08 63.03	
5,537.17 5,537.16				12/21/10 02/28/11	64.51 64.52	62.81 62.82	

.

Water Levels and Data over Time White Mesa Mill - Well TW4-26

Tab H

1

.

Laboratory Analytical Reports

LABORATORY ANALYTICAL REPORT

Prepared by Casper, WY Branch

Client:	Denison Mines USA Corp	Report Date: 03/11/11
Project:	1st Quarter Chloroform 2011	Collection Date: 02/23/11 12:55
Lab ID:	C11020714-009	DateReceived: 02/25/11
Client Sample II	D: MW-4	Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
MAJOR IONS							
Chloride	40	mg/L		1		A4500-CI B	02/28/11 12 20 / Ir
Nitrogen, Nitrate+Nitrite as N	4.6	mg/L	D	0.5		E353.2	03/01/11 14:19 / dc
VOLATILE ORGANIC COMPOUNDS							
Carbon tetrachloride	1.5	ug/L		1.0		SW8260B	03/01/11 09.04 / jlr
Chloroform	1700	ug/L	D	100		SW8260B	03/02/11 17:39 / jlr
Chloromethane	ND	ug/L		1.0		SW8260B	03/01/11 09:04 / jir
Methylene chloride	ND	ug/L		1.0		SW8260B	03/01/11 09.04 / jlr
Surr 1,2-Dichlorobenzene-d4	98.0	%REC		80-120		SW8260B	03/01/11 09:04 / jlr
Surr. Dibromofluoromethane	120	%REC		70-130		SW8260B	03/01/11 09:04 / jlr
Surr. p-Bromofluorobenzene	106	%REC		80-120		SW8260B	03/01/11 09:04 / jlr
Surr: Toluene-d8	95.0	%REC		80-120		SW8260B	03/01/11 09:04 / jlr

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. D - RL increased due to sample matrix. MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Halena, MT 877-472-0711 * Billings, MT 800-735-4489 * Casper, WY 888-235-0515 Gillette, WY 868-586-7175 * Rapid City, SD 898-572-1225 * College Station, TX 888-690-2218

LABORATORY ANALYTICAL REPORT

Prepared by Casper, WY Branch

Client:Denison Mines USA CorpProject:1st Quarter Chloroform 2011Lab ID:C11020714-008Client Sample ID:TW4-1

Report Date: 03/11/11 Collection Date: 02/24/11 08:00 DateReceived: 02/25/11 Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL_	MCL/ QCL	Method	Analysis Date / By
MAJOR IONS							
Chloride	41	mg/L		1		A4500-CI B	02/28/11 12·18 / lr
Nitrogen, Nitrate+Nitrite as N	6.6	mg/L	D	0.5		E353.2	03/01/11 14:17 / dc
VOLATILE ORGANIC COMPOUNDS							
Carbon tetrachioride	ND	ug/L		1.0		SW8260B	03/01/11 08·28 / jir
Chloroform	1300	ug/L	D	100		SW8260B	03/02/11 17:03 / jlr
Chloromethane	ND	ug/L		1.0		SW8260B	03/01/11 08.28 / jlr
Methylene chloride	ND	ug/L		1.0		SW8260B	03/01/11 08.28 / jlr
Surr: 1,2-Dichlorobenzene-d4	107	%REC		80-120		SW8260B	03/01/11 08.28 / jlr
Surr Dibromofluoromethane	121	%REC		70-130		SW8260B	03/01/11 08:28 / jlr
Surr p-Bromofluorobenzene	110	%REC		80-120		SW8260B	03/01/11 08.28 / jlr
Surr Toluene-d8	98.0	%REC		80-120		SW8260B	03/01/11 08·28 / jlr

Report RL -Definitions: QCL

RL - Analyte reporting limit QCL - Quality control limit. D - RL increased due to sample matrix.

LABORATORY ANALYTICAL REPORT

Prepared by Casper, WY Branch

Client:	Denison Mines USA Corp	Report Date: 03/11/11
Project:	1st Quarter Chloroform 2011	Collection Date: 02/23/11 09:50
Lab ID:	C11020714-016	DateReceived: 02/25/11
Client Sample ID:	TW4-1R	Matrix: Aqueous

Analyses	Result	Units	Qualifiers	MCL/ RL QCL	Method	Analysis Date / By
MAJOR IONS			<u></u>			
Chloride	ND	mg/L		1	A4500-CI B	02/28/11 12.38 / ir
Nitrogen, Nitrate+Nitrite as N	0.4	mg/L		0 1	E353.2	03/01/11 14·42 / dc
VOLATILE ORGANIC COMPOUNDS						
Carbon tetrachloride	ND	ug/L		1.0	SW8260B	03/02/11 23·41 / jlr
Chloroform	ND	ug/L		1.0	SW8260B	03/02/11 23:41 / jlr
Chloromethane	ND	ug/L		1.0	SW8260B	03/02/11 23·41 / jir
Methylene chlonde	ND	ug/L		1.0	SW8260B	03/02/11 23.41 / jir
Surr: 1,2-Dichlorobenzene-d4	103	%REC	80	0-120	SW8260B	03/02/11 23 [.] 41 / jir
Surr: Dibromofluoromethane	110	%REC	70	0-130	SW8260B	03/02/11 23 41 / jir
Surr: p-Bromofluorobenzene	106	%REC	80	0-120	SW8260B	03/02/11 23·41 / jlr
Surr. Toluene-d8	103	%REC	80	0-120	SW8260B	03/02/11 23·41 / jir

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit.

Helena, MT 877-472-0711 + Billings, MT 800-735-4489 = Casper, WY 888-235-0515 Gillette, WY 866-566-7175 + Rapid City, SD 898-572-1225 + College Station, TX 888-690-2218

LABORATORY ANALYTICAL REPORT

Prepared by Casper, WY Branch

Client:	Denison Mines USA Corp
Project:	1st Quarter Chloroform 2011
Lab ID:	C11020714-011
Client Sample ID:	TW4-2

Report Date: 03/11/11 Collection Date: 02/24/11 08:15 DateReceived: 02/25/11 Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
MAJOR IONS							
Chloride	46	mg/L		1		A4500-CI B	02/28/11 12:32 / Ir
Nitrogen, Nitrate+Nitrite as N	7	mg/L	D	1		E353.2	03/01/11 14:24 / dc
VOLATILE ORGANIC COMPOUNDS							
Carbon tetrachloride	2.4	ug/L		1.0		SW8260B	03/01/11 10.17 / jir
Chloroform	3100	ug/L	D	100		SW8260B	03/02/11 19 [.] 28 / jlr
Chloromethane	ND	ug/L		1.0		SW8260B	03/01/11 10·17 / jlr
Methylene chloride	ND	ug/L		1.0		SW8260B	03/01/11 10:17 / jlr
Surr: 1,2-Dichlorobenzene-d4	104	%REC		80-120		SW8260B	03/01/11 10:17 / jir
Surr Dibromofluoromethane	119	%REC		70-130		SW8260B	03/01/11 10.17 / jlr
Surr: p-Bromofluorobenzene	111	%REC		80-120		SW8260B	03/01/11 10 17 / jir
Surr Toluene-d8	106	%REC		80-120		SW8260B	03/01/11 10:17 / jir

Report Definitions:

RL - Analyte reporting limit. QCL - Quality control limit. D - RL increased due to sample matrix.

Helena, NT 877-472-0711 * Billings, NT 800-735-4489 * Casper, WY 888-235-0515 Gillette, WY 866-586-7175 * Rapid City, SD 888-672-1225 * College Station, TX 888-690-2218

LABORATORY ANALYTICAL REPORT

Prepared by Casper, WY Branch

 Client:
 Denison Mines USA Corp
 Report Date:
 03/09/11

 Project:
 1st Quarter Chloroform 2011
 Collection Date:
 02/15/11 13:10

 Lab ID:
 C11020540-002
 DateReceived:
 02/18/11

 Client Sample ID:
 TW4-3
 Matrix:
 Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
MAJOR IONS		- · · · · · · · · · · · · · · · · · · ·					
Chloride	23	mg/L		1		A4500-CI B	02/24/11 15 [.] 12 / lr
Nitrogen, Nitrate+Nitrite as N	3.5	mg/L	D	0.2		E353.2	02/22/11 15.55 / dc
VOLATILE ORGANIC COMPOUNDS							
Carbon tetrachloride	ND	ug/L		1.0		SW8260B	02/25/11 00·40 / jlr
Chloroform	ND	ug/L		1.0		SW8260B	02/25/11 00:40 / jlr
Chloromethane	ND	ug/L		1.0		SW8260B	02/25/11 00·40 / jlr
Methylene chloride	ND	ug/L		1.0		SW8260B	02/25/11 00.40 / jlr
Surr. 1,2-Dichlorobenzene-d4	109	%REC	-	80-120		SW8260B	02/25/11 00·40 / jlr
Surr Dibromofluoromethane	113	%REC		70-130		SW8260B	02/25/11 00.40 / jlr
Surr: p-Bromofluorobenzene	109	%REC		80-120		SW8260B	02/25/11 00·40 / jlr
Surr. Toluene-d8	89.0	%REC		80-120		SW8260B	02/25/11 00 40 / jir

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. D - RL increased due to sample matrix.

Helena, MT 877-472-0711 * Billings, MT 800-735-4489 * Casper, WY 888-235-0515 Gillette, WY 866-586-7175 * Rapid City, SD 868-572-1225 * College Station, TX 888-690-2218

LABORATORY ANALYTICAL REPORT

Prepared by Casper, WY Branch

Client:Denison Mines USA CorpProject:1st Quarter Chloroform 2011Lab ID:C11020540-001Client Sample ID:TW4-3R

Report Date: 03/09/11 Collection Date: 02/14/11 10:00 DateReceived: 02/18/11 Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
MAJOR IONS							
Chloride	ND	mg/L		1		A4500-CI B	02/24/11 15:10 / lr
Nitrogen, Nıtrate+Nıtrite as N	0.2	mg/L		0.1		E353.2	02/22/11 15 52 / dc
VOLATILE ORGANIC COMPOUNDS							
Carbon tetrachloride	ND	ug/L		1.0		SW8260B	02/25/11 00 [.] 05 / jlr
Chioroform	ND	ug/L		10		SW8260B	02/25/11 00 [.] 05 / jlr
Chloromethane	ND	ug/L		1.0		SW8260B	02/25/11 00:05 / jlr
Methylene chloride	ND	ug/L		1.0		SW8260B	02/25/11 00.05 / jlr
Surr. 1,2-Dichlorobenzene-d4	106	%REC	8	0-120		SW8260B	02/25/11 00:05 / jlr
Surr Dibromofluoromethane	112	%REC	7	0-130		SW8260B	02/25/11 00 [.] 05 / jlr
Surr p-Bromofluorobenzene	107	%REC	8	0-120		SW8260B	02/25/11 00 05 / jlr
Surr. Toluene-d8	89.0	%REC	8	0-120		SW8260B	02/25/11 00 05 / jir

 Report
 RL - Analyte reporting limit.

 Definitions:
 QCL - Quality control limit.

Helena, MT 877-472-0711 > Billings, MT 800-735-4489 + Casper, WY 888-235-0515 Gillette, WY 866-666-7175 © Rapid City, SD 888-672-1225 © College Station, TX 888-690-2218

LABORATORY ANALYTICAL REPORT

Prepared by Casper, WY Branch

Client:	Denison Mines USA Corp	Report Date: 03/11/11
Project:	1st Quarter Chloroform 2011	Collection Date: 02/23/11 13:50
Lab ID:	C11020714-010	DateReceived: 02/25/11
Client Sample IE): TW4-4	Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
MAJOR IONS							
Chloride	41	mg/L		1		A4500-CI B	02/28/11 12:30 / lr
Nitrogen, Nitrate+Nitrite as N	7	mg/L	D	1		E353.2	03/01/11 14:22 / dc
VOLATILE ORGANIC COMPOUNDS							
Carbon tetrachloride	1.4	ug/L		1.0		SW8260B	03/01/11 09:40 / jir
Chloroform	1800	ug/L	D	100		SW8260B	03/02/11 18.15 / jir
Chloromethane	ND	ug/L		1.0		SW8260B	03/01/11 09.40 / jlr
Methylene chloride	ND	ug/L		1.0		SW8260B	03/01/11 09:40 / jlr
Surr. 1,2-Dichlorobenzene-d4	103	%REC		80-120		SW8260B	03/01/11 09:40 / jir
Surr: Dibromofluoromethane	124	%REC		70-130		SW8260B	03/01/11 09.40 / jlr
Surr: p-Bromofluorobenzene	109	%REC		80-120		SW8260B	03/01/11 09.40 / jlr
Surr: Toluene-d8	105	%REC		80-120		SW8260B	03/01/11 09.40 / jlr

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. D - RL increased due to sample matrix.

Helene, MT 677-472-0711 + Billings, MT 800-735-4489 • Casper, WY 888-235-0515 Gillette, WY 866-686-7175 * Rapid City, SD 889-672-1225 * College Station, TX 888-690-2218

LABORATORY ANALYTICAL REPORT

Prepared by Casper, WY Branch

Client:	Denison Mines USA Corp
Project:	1st Quarter Chloroform 2011
Lab ID:	C11020714-021
Client Sample ID:	TW4-5

Report Date: 03/11/11 Collection Date: 02/22/11 08:17 DateReceived: 02/25/11 Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
MAJOR IONS							
Chloride	34	mg/L		1		A4500-CI B	02/28/11 12.53 / Ir
Nitrogen, Nitrate+Nitrite as N	7	mg/L	D	1		E353.2	03/01/11 15.02 / dc
VOLATILE ORGANIC COMPOUNDS							
Carbon tetrachloride	ND	ug/L		1.0		SW8260B	03/03/11 02:42 / jir
Chloroform	10	ug/L		10		SW8260B	03/03/11 02:42 / jir
Chloromethane	ND	ug/L		1.0		SW8260B	03/03/11 02.42 / jlr
Methylene chloride	ND	ug/L		1.0		SW8260B	03/03/11 02:42 / jir
Surr 1,2-Dichlorobenzene-d4	99.0	%REC	8	80-120		SW8260B	03/03/11 02 42 / jir
Surr: Dibromofluoromethane	110	%REC	-	70-130		SW8260B	03/03/11 02 42 / jir
Surr p-Bromofluorobenzene	105	%REC	8	80-120		SW8260B	03/03/11 02:42 / jir
Surr Toluene-d8	109	%REC	8	80-120		SW8260B	03/03/11 02·42 / jir

Report RL - Analyte reporting limit **Definitions:**

QCL - Quality control limit. D - RL increased due to sample matrix.

Helena, MT 877-472-0711 • Billings, MT 800-735-4489 • Casper, WY 888-235-0515 Gillette, WY 866-586-7175 • Rapid City, SD 888-672-1225 • College Station, TX 888-690-2218

LABORATORY ANALYTICAL REPORT

Prepared by Casper, WY Branch

Client:	Denison Mines USA Corp	Report Date: 03/11/11
Project:	1st Quarter Chloroform 2011	Collection Date: 02/23/11 08:00
Lab ID:	C11020714-002	DateReceived: 02/25/11
Client Sample	ID: TW4-6	Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
MAJOR IONS							
Chloride	40	mg/L		1		A4500-CI B	02/28/11 12.03 / lr
Nitrogen, Nitrate+Nitrite as N	0.7	mg/L		0.1		E353.2	03/01/11 13.54 / dc
VOLATILE ORGANIC COMPOUNDS							
Carbon tetrachloride	ND	ug/L		1.0		SW8260B	03/01/11 06:03 / jlr
Chloroform	47	ug/L	D	10		SW8260B	03/02/11 15:15 / jir
Chloromethane	ND	ug/L		1.0		SW8260B	03/01/11 06:03 / jlr
Methylene chloride	ND	ug/L		1.0		SW8260B	03/01/11 06.03 / jlr
Surr: 1,2-Dichlorobenzene-d4	108	%REC		80-120		SW8260B	03/01/11 06·03 / jlr
Surr: Dibromofluoromethane	124	%REC		70-130		SW8260B	03/01/11 06:03 / jlr
Surr. p-Bromofluorobenzene	112	%REC		80-120		SW8260B	03/01/11 06:03 / jlr
Surr: Toluene-d8	98.0	%REC		80-120		SW8260B	03/01/11 06·03 / jlr

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit D - RL increased due to sample matrix. MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Helena, MT 677-472-0711 • Billings, MT 800-735-4469 • Casper, WY 888-235-0515 Gillette, WY 866-686-7175 • Rapid City, SD 888-672-1225 • College Station, TX 888-680-2218

LABORATORY ANALYTICAL REPORT

Prepared by Casper, WY Branch

Client:	Denison Mines USA Corp
Project:	1st Quarter Chloroform 2011
Lab ID:	C11020714-006
Client Sample ID:	TW4-7

Report Date: 03/11/11 Collection Date: 02/23/11 09:00 DateReceived: 02/25/11 Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
MAJOR IONS							
Chloride	45	mg/L		1		A4500-CI B	02/28/11 12 13 / lr
Nitrogen, Nitrate+Nitrite as N	3.6	mg/L	D	0.2		E353.2	03/01/11 14.04 / dc
VOLATILE ORGANIC COMPOUNDS							
Carbon tetrachloride	ND	ug/L		1.0		SW8260B	03/01/11 07·52 / jlr
Chloroform	1300	ug/L	D	100		SW8260B	02/28/11 20 23 / jlr
Chloromethane	ND	ug/L		1.0		SW8260B	03/01/11 07·52 / jlr
Methylene chloride	ND	ug/L		1.0		SW8260B	03/01/11 07·52 / jir
Surr 1,2-Dichlorobenzene-d4	104	%REC		80-120		SW8260B	03/01/11 07:52 / jir
Surr. Dibromofluoromethane	113	%REC		70-130		SW8260B	03/01/11 07·52 / jir
Surr p-Bromofluorobenzene	106	%REC		80-120		SW8260B	03/01/11 07:52 / jir
Surr: Toluene-d8	100	%REC		80-120		SW8260B	03/01/11 07:52 / jlr

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. D - RL increased due to sample matrix.

Helena, MT 877-472-0711 + Billings, MT 800-735-4489 + Casper, WY 888-235-0515 Gilletta, WY 886-586-7175 + Rapid City, SD 898-572-1225 + College Station, TX 888-690-2218

LABORATORY ANALYTICAL REPORT

Prepared by Casper, WY Branch

Client:	Denison Mines USA Corp
Project:	1st Quarter Chloroform 2011
Lab ID:	C11020540-009
Client Sample ID:	TW4-8

 Report Date:
 03/09/11

 Collection Date:
 02/16/11 10.40

 DateReceived:
 02/18/11

 Matrix:
 Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
MAJOR IONS							
Chloride	52	mg/L		1		A4500-CI B	02/24/11 15 43 / lr
Nitrogen, Nitrate+Nitrite as N	ND	mg/L		0.1		E353 2	02/22/11 16·20 / dc
VOLATILE ORGANIC COMPOUNDS							
Carbon tetrachloride	ND	ug/L		1.0		SW8260B	02/25/11 04:50 / jlr
Chloroform	ND	ug/L		1.0		SW8260B	02/25/11 04·50 / jlr
Chloromethane	ND	ug/L		1.0		SW8260B	02/25/11 04 50 / jlr
Methylene chloride	ND	ug/L		1.0		SW8260B	02/25/11 04·50 / jlr
Surr. 1,2-Dichlorobenzene-d4	110	%REC	٤	30-120		SW8260B	02/25/11 04:50 / jlr
Surr: Dibromofluoromethane	113	%REC	- 1	70-130		SW8260B	02/25/11 04 50 / jlr
Surr: p-Bromofluorobenzene	110	%REC	٤	30-120		SW8260B	02/25/11 04.50 / jlr
Surr: Toluene-d8	90.0	%REC	٤	80-120		SW8260B	02/25/11 04 50 / jlr

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit.

Helene, MT 877-472-0711 > Billings, MT 800-735-4489 * Casper, WY 888-235-0515 Gillette, WY 886-686-7175 • Rapid City, SD 898-872-1225 • College Station, TX 888-690-2218

LABORATORY ANALYTICAL REPORT

Prepared by Casper, WY Branch

Client:	Denison Mines USA Corp	Report Date: 03/09/11
Project:	1st Quarter Chloroform 2011	Collection Date: 02/17/11 07:40
Lab ID:	C11020540-011	DateReceived: 02/18/11
Client Sample ID:	TW4-9	Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
MAJOR IONS					<u></u>		
Chloride	41	mg/L		1		A4500-CI B	02/24/11 15:50 / lr
Nitrogen, Nıtrate+Nıtrite as N	1.3	mg/L		0.1		E353.2	02/22/11 16·32 / dc
VOLATILE ORGANIC COMPOUNDS							
Carbon tetrachloride	ND	ug/L		1.0		SW8260B	02/25/11 19:09 / jlr
Chloroform	ND	ug/L		1.0		SW8260B	02/25/11 19.09 / jlr
Chloromethane	ND	ug/L		1.0		SW8260B	02/25/11 19:09 / jir
Methylene chloride	ND	ug/L		1.0		SW8260B	02/25/11 19 [.] 09 / jlr
Surr: 1,2-Dichlorobenzene-d4	110	%REC	8	30-120		SW8260B	02/25/11 19 09 / jlr
Surr Dibromofluoromethane	112	%REC	7	70-130		SW8260B	02/25/11 19.09 / jlr
Surr. p-Bromofluorobenzene	108	%REC	8	30-120		SW8260B	02/25/11 19 [.] 09 / jlr
Surr. Toluene-d8	83.0	%REC	8	30-120		SW8260B	02/25/11 19:09 / jlr

Report RL -Definitions: QCL

RL - Analyte reporting limit QCL - Quality control limit.

Helens, MT 877-472-0711 + Billings, MT 800-735-4489 * Casper, WY 888-235-0515 Gillette, WY 868-686-7175 + Rapid City, SD 888-572-1225 + College Station, TX 888-690-2218

LABORATORY ANALYTICAL REPORT

Prepared by Casper, WY Branch

Client:Denison Mines USA CorpProject:1st Quarter Chloroform 2011Lab ID:C11020540-010Client Sample ID:TW4-9R

Report Date: 03/09/11 Collection Date: 02/16/11 11:53 DateReceived: 02/18/11 Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
MAJOR IONS							
Chloride	ND	mg/L		1		A4500-CI B	02/24/11 15:44 / lr
Nitrogen, Nitrate+Nitrite as N	0.2	mg/L		0.1		E353 2	02/22/11 16.22 / dc
VOLATILE ORGANIC COMPOUNDS							
Carbon tetrachloride	ND	ug/L		1.0		SW8260B	02/25/11 18 34 / jlr
Chloroform	ND	ug/L		1.0		SW8260B	02/25/11 18.34 / jlr
Chloromethane	ND	ug/L		1.0		SW8260B	02/25/11 18 34 / jlr
Methylene chloride	ND	ug/L		1.0		SW8260B	02/25/11 18 [.] 34 / jlr
Surr. 1,2-Dichlorobenzene-d4	103	%REC	8	30-120		SW8260B	02/25/11 18 34 / jir
Surr: Dibromofluoromethane	109	%REC	7	70-130		SW8260B	02/25/11 18 [.] 34 / jlr
Surr p-Bromofluorobenzene	102	%REC	8	30-120		SW8260B	02/25/11 18.34 / jlr
Surr: Toluene-d8	83.0	%REC	8	30-120		SW8260B	02/25/11 18 [.] 34 / jlr

 Report
 RL - Analyte reporting limit

 Definitions:
 QCL - Quality control limit.

Helena, MT 877-472-0711 > Billings, MT 800-735-4469 + Casper, WY 888-235-0515 Gillette, WY 886-686-7175 = Rapid Crty, SD 888-672-1225 = College Station, TX 888-690-2218

LABORATORY ANALYTICAL REPORT

Prepared by Casper, WY Branch

Client:	Denison Mines USA Corp	Report Date: 03/11/11
Project:	1st Quarter Chloroform 2011	Collection Date: 02/23/11 08:40
Lab ID:	C11020714-005	DateReceived: 02/25/11
Client Sample	D: TW4-10	Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
MAJOR IONS	•						
Chloride	62	mg/L		1		A4500-CI B	02/28/11 12.11 / lr
Nitrogen, Nitrate+Nitrite as N	9	mg/L	D	1		E353.2	03/01/11 14 [.] 02 / dc
VOLATILE ORGANIC COMPOUNDS							
Carbon tetrachloride	ND	ug/L		1.0		SW8260B	03/01/11 07:16 / jir
Chloroform	620	ug/L	D	100		SW8260B	03/02/11 16·27 / jir
Chloromethane	ND	ug/L		1.0		SW8260B	03/01/11 07:16 / jlr
Methylene chloride	ND	ug/L		1.0		SW8260B	03/01/11 07:16 / jlr
Surr. 1,2-Dichlorobenzene-d4	104	%REC		80-120		SW8260B	03/01/11 07·16 / jlr
Surr Dibromofluoromethane	115	%REC		70-130		SW8260B	03/01/11 07:16 / jlr
Surr p-Bromofluorobenzene	105	%REC		80-120		SW8260B	03/01/11 07:16 / jlr
Surr Toluene-d8	97.0	%REC		80-120		SW8260B	03/01/11 07:16 / jlr

Report RL - Ana Definitions: QCL - Q

RL - Analyte reporting limit. QCL - Quality control limit. D - RL increased due to sample matrix.

Helena, MT 877-472-0711 © Billings, MT 800-735-4469 % Casper, WY 888-235-0515 Gillette, WY 866-586-7175 © Rapid City, SD 868-672-1225 © College Station, TX 888-690-2218

LABORATORY ANALYTICAL REPORT

Prepared by Casper, WY Branch

Client:	Denison Mines USA Corp
Project:	1st Quarter Chloroform 2011
Lab ID:	C11020714-003
Client Sample ID:	TW4-11

Report Date: 03/11/11 Collection Date: 02/23/11 08:25 DateReceived: 02/25/11 Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
MAJOR IONS							
Chloride	46	mg/L		1		A4500-CI B	02/28/11 12:06 / lr
Nitrogen, Nitrate+Nitrite as N	6.5	mg/L	D	0.5		E353.2	03/01/11 13 57 / dc
VOLATILE ORGANIC COMPOUNDS							
Carbon tetrachloride	ND	ug/L		1.0		SW8260B	03/01/11 06 39 / jir
Chloroform	1000	ug/L	D	100		SW8260B	02/28/11 18:34 / jlr
Chioromethane	ND	ug/L		1.0		SW8260B	03/01/11 06.39 / jlr
Methylene chloride	ND	ug/L		1.0		SW8260B	03/01/11 06 39 / jlr
Surr: 1,2-Dichlorobenzene-d4	107	%REC		80-120		SW8260B	03/01/11 06:39 / jlr
Surr: Dibromofluoromethane	122	%REC		70-130		SW8260B	03/01/11 06:39 / jlr
Surr: p-Bromofluorobenzene	107	%REC		80-120		SW8260B	03/01/11 06.39 / jlr
Surr: Toluene-d8	99.0	%REC		80-120		SW8260B	03/01/11 06:39 / jlr

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. D - RL increased due to sample matrix.

Halena, MT 877-472-0711 + Billings, MT 800-735-4489 + Casper, WY 888-235-0515 Gillette, WY 866-666-7175 + Rapid City, SD 868-672-1225 + College Station, TX 888-690-2218

LABORATORY ANALYTICAL REPORT

Prepared by Casper, WY Branch

Client:Denison Mines USA CorpProject:1st Quarter Chloroform 2011Lab ID:C11020540-003Client Sample ID:TW4-12

Report Date: 03/09/11 Collection Date: 02/15/11 13:25 DateReceived: 02/18/11 Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
MAJOR IONS							
Chloride	31	mg/L		1		A4500-CI B	02/24/11 15.14 / lr
Nitrogen, Nitrate+Nitrite as N	6.5	mg/L	D	0.5		E353.2	02/22/11 15:57 / dc
VOLATILE ORGANIC COMPOUNDS							
Carbon tetrachloride	ND	ug/L		1.0		SW8260B	02/25/11 01.16 / jlr
Chloroform	ND	ug/L		1.0		SW8260B	02/25/11 01.16 / jlr
Chloromethane	ND	ug/L		1.0		SW8260B	02/25/11 01:16 / jlr
Methylene chlonde	ND	ug/L		1.0		SW8260B	02/25/11 01·16 / jir
Surr. 1,2-Dichlorobenzene-d4	110	%REC		80-120		SW8260B	02/25/11 01:16 / jlr
Surr: Dibromofluoromethane	112	%REC		70-130		SW8260B	02/25/11 01:16 / jir
Surr p-Bromofluorobenzene	108	%REC	;	80-120		SW8260B	02/25/11 01·16 / jir
Surr. Toluene-d8	89.0	%REC	:	80-120		SW8260B	02/25/11 01 16 / jir

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit D - RL increased due to sample matrix. MCL - Maximum contaminant level. ND - Not detected at the reporting limit

Page 5 of 26

LABORATORY ANALYTICAL REPORT

Prepared by Casper, WY Branch

Client:	Denison Mines USA Corp	Report Date: 03/09/11
Project:	1st Quarter Chloroform 2011	Collection Date: 02/15/11 13:36
Lab ID:	C11020540-004	DateReceived: 02/18/11
Client Sample II) : TW4-13	Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
MAJOR IONS							
Chloride	60	mg/L		1		A4500-CI B	02/24/11 15 16 / Ir
Nitrogen, Nitrate+Nitrite as N	5.5	mg/L	D	05		E353 2	02/22/11 16:00 / dc
VOLATILE ORGANIC COMPOUNDS							
Carbon tetrachloride	ND	ug/L		1.0		SW8260B	02/25/11 01·52 / jlr
Chloroform	ND	ug/L		1.0		SW8260B	02/25/11 01·52 / jlr
Chloromethane	ND	ug/L		1.0		SW8260B	02/25/11 01·52 / jlr
Methylene chloride	NÐ	ug/L		1.0		SW8260B	02/25/11 01.52 / jlr
Surr: 1,2-Dichlorobenzene-d4	109	%REC		80-120		SW8260B	02/25/11 01.52 / jlr
Surr Dibromofluoromethane	108	%REC		70-130		SW8260B	02/25/11 01 52 / jlr
Surr. p-Bromofluorobenzene	109	%REC		80-120		SW8260B	02/25/11 01·52 / jlr
Surr. Toluene-d8	88 0	%REC		80-120		SW8260B	02/25/11 01 52 / jlr

RL - Analyte reporting limit. QCL - Quality control limit. D - RL increased due to sample matrix.

Helena, MT 877-472-0711 • Billings, MT 800-735-4469 • Casper, WY 888-235-0515 Gillette, WY 866-686-7175 • Rapid City, SD 868-672-1225 • College Station, TX 888-690-2218

LABORATORY ANALYTICAL REPORT

Prepared by Casper, WY Branch

Client:Denison Mines USA CorpProject:1st Quarter Chloroform 2011Lab ID:C11020540-005Client Sample ID:TW4-14

Report Date: 03/09/11 Collection Date: 02/15/11 13:46 DateReceived: 02/18/11 Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
MAJOR IONS	_						
Chloride	25	mg/L		1		A4500-CI B	02/24/11 15:19 / lr
Nitrogen, Nitrate+Nitrite as N	1.8	mg/L	D	0.2		E353.2	02/22/11 16:02 / dc
VOLATILE ORGANIC COMPOUNDS							
Carbon tetrachloride	ND	ug/L		1.0		SW8260B	02/25/11 02 28 / jir
Chloroform	ND	ug/L		1.0		SW8260B	02/25/11 02·28 / jlr
Chloromethane	ND	ug/L		1.0		SW8260B	02/25/11 02:28 / jlr
Methylene chloride	ND	ug/L		1.0		SW8260B	02/25/11 02·28 / jlr
Surr 1,2-Dichlorobenzene-d4	108	%REC	4	80-120		SW8260B	02/25/11 02.28 / jlr
Surr. Dibromofluoromethane	112	%REC		70-130		SW8260B	02/25/11 02·28 / jlr
Surr: p-Bromofluorobenzene	108	%REC	1	80-120		SW8260B	02/25/11 02:28 / jlr
Surr: Toluene-d8	90.0	%REC	1	80-120		SW8260B	02/25/11 02·28 / jlr

 Report
 RL - Analyte reporting limit.

 Definitions:
 QCL - Quality control limit.

 D - RL increased due to sample matrix.

LABORATORY ANALYTICAL REPORT

Prepared by Casper, WY Branch

Client:	Denison Mines USA Corp	Report Date: 03/11/11
Project:	1st Quarter Chloroform 2011	Collection Date: 02/23/11 13:30
Lab ID:	C11020714-004	DateReceived: 02/25/11
Client Sample ID:	TW4-15	Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
MAJOR IONS							
Chloride	57	mg/L		1		A4500-CI B	02/28/11 12:09 / lr
Nitrogen, Nitrate+Nitrite as N	05	mg/L		0.1		E353.2	03/01/11 13 59 / dc
VOLATILE ORGANIC COMPOUNDS							
Carbon tetrachloride	ND	ug/L		1.0		SW8260B	02/28/11 19.10 / jlr
Chloroform	450	ug/L	D	100		SW8260B	03/02/11 15.51 / jlr
Chloromethane	ND	ug/L		1.0		SW8260B	02/28/11 19:10 / jlr
Methylene chlonde	36	ug/L		1.0		SW8260B	02/28/11 19.10 / jlr
Surr: 1,2-Dichlorobenzene-d4	102	%REC		80-120		SW8260B	02/28/11 19:10 / jlr
Surr. Dibromofluoromethane	105	%REC		70-130		SW8260B	02/28/11 19.10 / jlr
Surr: p-Bromofluorobenzene	107	%REC		80-120		SW8260B	02/28/11 19:10 / jlr
Surr: Toluene-d8	105	%REC		80-120		SW8260B	02/28/11 19.10 / jlr

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. D - RL increased due to sample matrix.

Helena, MT 877-472-0711 > Billings, MT 800-735-4489 + Casper, WY 868-235-0515 Gillette, WY 866-686-7175 = Rapid City, SD 868-672-1225 = College Station, TX 888-690-2218

LABORATORY ANALYTICAL REPORT

Prepared by Casper, WY Branch

Client:	Denison Mines USA Corp	Report Date: 03/11/11
Project:	1st Quarter Chloroform 2011	Collection Date: 02/22/11 07:45
Lab ID:	C11020714-019	DateReceived: 02/25/11
Client Sample ID:	TW4-16	Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
MAJOR IONS							
Chloride	86	mg/L		1		A4500-CI B	02/28/11 12:45 / Ir
Nitrogen, Nitrate+Nitrite as N	7	mg/L	D	1		E353.2	03/01/11 14.57 / dc
VOLATILE ORGANIC COMPOUNDS							
Carbon tetrachloride	ND	ug/L		1.0		SW8260B	03/03/11 01:29 / jlr
Chloroform	15	ug/L		1.0		SW8260B	03/03/11 01:29 / jlr
Chioromethane	ND	ug/L		1.0		SW8260B	03/03/11 01:29 / jlr
Methylene chloride	ND	ug/L		1.0		SW8260B	03/03/11 01:29 / jir
Surr: 1,2-Dichlorobenzene-d4	99.0	%REC	4	80-120		SW8260B	03/03/11 01:29 / jlr
Surr Dibromofluoromethane	114	%REC		70-130		SW8260B	03/03/11 01.29 / jir
Surr p-Bromofluorobenzene	103	%REC	:	80-120		SW8260B	03/03/11 01:29 / jlr
Surr. Toluene-d8	103	%REC	1	80-120		SW8260B	03/03/11 01:29 / jlr

 Report
 RL - Analyte reporting limit.

 Definitions:
 QCL - Quality control limit.

 D - RL increased due to sample matrix.

Helena, MT 877-472-0711 * Billings, MT 808-735-4469 * Casper, WY 888-235-0515 Gillette, WY 868-666-7175 * Rapid City, SD 888-672-1225 * College Station, TX 888-690-2218

LABORATORY ANALYTICAL REPORT

Prepared by Casper, WY Branch

Client:	Denison Mines USA Corp	Report Date: 03/11/11
Project:	1st Quarter Chloroform 2011	Collection Date: 02/21/11 07:59
Lab ID:	C11020714-014	DateReceived: 02/25/11
Client Sample ID:	TW4-16R	Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
MAJOR IONS				<u> </u>			
Chloride	ND	mg/L		1		A4500-CI B	02/28/11 12·36 / lr
Nitrogen, Nıtrate+Nıtrite as N	0.2	mg/L		0.1		E353.2	03/01/11 14:37 / dc
VOLATILE ORGANIC COMPOUNDS							
Carbon tetrachloride	ND	ug/L		1.0		SW8260B	03/01/11 01:49 / jlr
Chloroform	ND	ug/L		1.0		SW8260B	03/01/11 01.49 / jlr
Chloromethane	ND	ug/L		1.0		SW8260B	03/01/11 01·49 / jlr
Methylene chloride	ND	ug/L		1.0		SW8260B	03/01/11 01·49 / jlr
Surr: 1,2-Dichlorobenzene-d4	99.0	%REC	8	30-120		SW8260B	03/01/11 01.49 / jlr
Surr. Dibromofluoromethane	112	%REC	7	70-130		SW8260B	03/01/11 01:49 / jlr
Surr. p-Bromofluorobenzene	105	%REC	8	30-120		SW8260B	03/01/11 01.49 / jlr
Surr. Toluene-d8	101	%REC	8	30-120		SW8260B	03/01/11 01·49 / jlr

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit.

Helene, MT 877-472-0711 * Billings, MT 800-735-4489 * Casper, WY 888-235-0515 Gillette, WY 856-686-7175 • Rapid City, SD 898-672-1225 * College Station, TX 888-690-2218

LABORATORY ANALYTICAL REPORT

Prepared by Casper, WY Branch

Client:	Denison Mines USA Corp	Report Date: 03/11/11
Project:	1st Quarter Chloroform 2011	Collection Date: 02/23/11 13:40
Lab ID:	C11020714-007	DateReceived: 02/25/11
Client Sample ID:	TW4-17	Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
MAJOR IONS							
Chloride	40	mg/L		1		A4500-CI B	02/28/11 12:15 / lr
Nitrogen, Nitrate+Nitrite as N	ND	mg/L		01		E353.2	03/01/11 14:14 / dc
VOLATILE ORGANIC COMPOUNDS							
Carbon tetrachloride	ND	ug/L		1.0		SW8260B	02/28/11 20.59 / jlr
Chloroform	ND	ug/L		1.0		SW8260B	02/28/11 20:59 / jlr
Chloromethane	ND	ug/L		1.0		SW8260B	02/28/11 20:59 / jir
Methylene chloride	ND	ug/L		1.0		SW8260B	02/28/11 20:59 / jir
Surr. 1,2-Dichlorobenzene-d4	106	%REC	8	30-120		SW8260B	02/28/11 20:59 / jlr
Surr: Dibromofluoromethane	106	%REC	7	70-130		SW8260B	02/28/11 20.59 / jlr
Surr. p-Bromofluorobenzene	110	%REC	8	30-120		SW8260B	02/28/11 20:59 / jir
Surr [.] Toluene-d8	100	%REC	8	80-120		SW8260B	02/28/11 20:59 / jir

 Report
 RL - Analyte reporting limit.

 Definitions:
 QCL - Quality control limit.

Helena, MT 677-472-0711 * Billings, MT 600-735-4469 * Casper, WY 688-235-0515 Gillette, WY 666-686-7175 * Rapid City, SD 688-672-1225 * College Station, TX 688-690-2218

LABORATORY ANALYTICAL REPORT

Prepared by Casper, WY Branch

Client:Denison Mines USA CorpProject:1st Quarter Chloroform 2011Lab ID:C11020714-022Client Sample ID:TW4-18

Report Date: 03/11/11 Collection Date: 02/22/11 08:40 DateReceived: 02/25/11 Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
MAJOR IONS							
Chloride	52	mg/L		1		A4500-CI B	02/28/11 12 [.] 55 / Ir
Nitrogen, Nitrate+Nitrite as N	10	mg/L	D	1		E353.2	03/01/11 15·12 / dc
VOLATILE ORGANIC COMPOUNDS							
Carbon tetrachloride	ND	ug/L		1.0		SW8260B	03/03/11 03·18 / jlr
Chloroform	39	ug/L		10		SW8260B	03/03/11 03.18 / jlr
Chloromethane	ND	ug/L		1.0		SW8260B	03/03/11 03·18 / jlr
Methylene chloride	ND	ug/L		1.0		SW8260B	03/03/11 03·18 / jlr
Surr: 1,2-Dichlorobenzene-d4	103	%REC	8	30-120		SW8260B	03/03/11 03.18 / jlr
Surr: Dibromofluoromethane	113	%REC	7	70-130		SW8260B	03/03/11 03.18 / jlr
Surr: p-Bromofluorobenzene	107	%REC	٤	30-120		SW8260B	03/03/11 03·18 / jlr
Surr. Toluene-d8	101	%REC	8	30-120		SW8260B	03/03/11 03:18 / jlr

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. D - RL increased due to sample matrix.

Helena, MT 877-472-0711 * Billings, MT 800-735-4469 * Casper, WY 888-235-0515 Gillette, WY 866-586-7175 * Rapid City, SD 888-672-1225 * College Station, TX 888-680-2218

LABORATORY ANALYTICAL REPORT

Prepared by Casper, WY Branch

Client:Denison Mines USA CorpProject:1st Quarter Chloroform 2011Lab ID:C11020540-014Client Sample ID:TW4-19

Report Date: 03/09/11 Collection Date: 02/17/11 10·15 DateReceived: 02/18/11 Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
MAJOR IONS							
Chloride	135	mg/L		1		A4500-CI B	02/24/11 16:04 / lr
Nitrogen, Nitrate+Nitrite as N	17	mg/L	D	2		E353.2	02/22/11 16:37 / dc
VOLATILE ORGANIC COMPOUNDS							
Carbon tetrachloride	17	ug/L		1.0		SW8260B	02/26/11 05 51 / jlr
Chloroform	3400	ug/L	D	100		SW8260B	02/28/11 16:46 / jir
Chloromethane	ND	ug/L		1.0		SW8260B	02/26/11 05 [.] 51 / jir
Methylene chloride	ND	ug/L		1.0		SW8260B	02/26/11 05:51 / jir
Surr. 1,2-Dichlorobenzene-d4	106	%REC		80-120		SW8260B	02/26/11 05·51 / jlr
Surr Dibromofluoromethane	106	%REC		70-130		SW8260B	02/26/11 05 [.] 51 / jir
Surr. p-Bromofluorobenzene	106	%REC		80-120		SW8260B	02/26/11 05:51 / jlr
Surr. Toluene-d8	84.0	%REC		80-120		SW8260B	02/26/11 05.51 / jlr

 Report
 RL - Analyte reporting limit.

 Definitions:
 QCL - Quality control limit.

 D - RL increased due to sample matrix

MCL - Maximum contaminant level

ND - Not detected at the reporting limit.

Halena, MT 877-472-0711 + Billings, MT 800-735-4489 + Gasper, WY 888-235-0515 Gillette, WY 866-666-7175 + Rapid City, SD 898-672-1225 + College Station, TX 888-680-2218

LABORATORY ANALYTICAL REPORT

Prepared by Casper, WY Branch

Client:	Denison Mines USA Corp	Report Date: 03/11/11
Project:	1st Quarter Chloroform 2011	Collection Date: 02/23/11 14:18
Lab ID:	C11020714-012	DateReceived: 02/25/11
Client Sample ID	: TW4-20	Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
MAJOR IONS							
Chloride	220	mg/L		1		A4500-CI B	02/28/11 12:34 / Ir
Nitrogen, Nitrate+Nitrite as N	4.4	mg/L	D	0.2		E353.2	03/01/11 14:34 / dc
VOLATILE ORGANIC COMPOUNDS							
Carbon tetrachloride	27	ug/L		1.0		SW8260B	03/01/11 10:53 / jlr
Chloroform	31000	ug/L	D	1000		SW8260B	02/28/11 21.35 / jlr
Chloromethane	ND	ug/L		1.0		SW8260B	03/01/11 10 53 / jir
Methylene chloride	19	ug/L		1.0		SW8260B	03/01/11 10 53 / jlr
Surr: 1,2-Dichlorobenzene-d4	100	%REC		80-120		SW8260B	03/01/11 10·53 / jir
Surr: Dibromofluoromethane	118	%REC		70-130		SW8260B	03/01/11 10·53 / jir
Surr: p-Bromofluorobenzene	113	%REC		80-120		SW8260B	03/01/11 10 [.] 53 / jir
Surr: Toluene-d8	106	%REC		80-120		SW8260B	03/01/11 10.53 / jir

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. D - RL increased due to sample matrix.

Helena, MT 977-472-0711 + Billings, MT 800-735-4499 + Casper, WY 888-235-0515 Gillette, WY 866-566-7175 + Rapid City, SD 899-672-1225 + College Station, TX 888-690-2218

LABORATORY ANALYTICAL REPORT

Prepared by Casper, WY Branch

Client:	Denison Mines USA Corp	Report Date: 03/11/11
Project:	1st Quarter Chloroform 2011	Collection Date: 02/22/11 08:55
Lab ID:	C11020714-023	DateReceived: 02/25/11
Client Sample ID	: TW4-21	Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
MAJOR IONS							
Chloride	303	mg/L		1		A4500-CI B	02/28/11 12:58 / Ir
Nitrogen, Nitrate+Nitrite as N	9	mg/L	D	1		E353.2	03/01/11 15:14 / dc
VOLATILE ORGANIC COMPOUNDS							
Carbon tetrachloride	1.2	ug/L		1.0		SW8260B	03/03/11 05:06 / jlr
Chloroform	230	ug/L	D	10		SW8260B	03/03/11 03:54 / jlr
Chloromethane	ND	ug/L		1.0		SW8260B	03/03/11 05:06 / jir
Methylene chloride	ND	ug/L		1.0		SW8260B	03/03/11 05·06 / jir
Surr 1,2-Dichlorobenzene-d4	101	%REC	1	80-120		SW8260B	03/03/11 05:06 / jlr
Surr. Dibromofluoromethane	107	%REC	•	70-130		SW8260B	03/03/11 05 [.] 06 / jlr
Surr: p-Bromofluorobenzene	103	%REC	1	80-120		SW8260B	03/03/11 05:06 / jlr
Surr: Toluene-d8	106	%REC	1	80-120		SW8260B	03/03/11 05:06 / jlr

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit D - RL increased due to sample matnx.

Helena, MT 877-472-0711 • Billings, MT 800-735-4489 • Casper, WY 888-235-0515 Gillette, WY 866-566-7175 • Rapid City, SD 808-672-1225 • College Station, TX 888-690-2218

LABORATORY ANALYTICAL REPORT

Prepared by Casper, WY Branch

Client:	Denison Mines USA Corp	Report Date:	03/11/11
Project:	1st Quarter Chloroform 2011	Collection Date:	02/23/11 07:40
Lab ID:	C11020714-001	DateReceived:	02/25/11
Client Sample ID:	TW4-22	Matrix:	Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
MAJOR IONS							
Chloride	114	mg/L		1		A4500-CI B	02/28/11 11·54 / lr
Nitrogen, Nitrate+Nitrite as N	18	mg/L	D	1		E353 2	03/01/11 13 44 / dc
VOLATILE ORGANIC COMPOUNDS							
Carbon tetrachloride	ND	ug/L		1.0		SW8260B	03/01/11 05·27 / jir
Chloroform	1300	ug/L	D	100		SW8260B	02/28/11 17.22 / jlr
Chloromethane	ND	ug/L		1.0		SW8260B	03/01/11 05 27 / jlr
Methylene chloride	ND	ug/L		1.0		SW8260B	03/01/11 05:27 / jlr
Surr: 1,2-Dichlorobenzene-d4	104	%REC		80-120		SW8260B	03/01/11 05:27 / jlr
Surr: Dibromofluoromethane	120	%REC		70-130		SW8260B	03/01/11 05 27 / jlr
Surr: p-Bromofluorobenzene	106	%REC		80-120		SW8260B	03/01/11 05.27 / jlr
Surr: Toluene-d8	103	%REC		80-120		SW8260B	03/01/11 05.27 / jlr

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. D - RL increased due to sample matrix. MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Helena, MT 877-472-0711 = Billings, MT 800-735-4489 = Casper, WY 888-235-0515 Gillette, WY 868-686-7175 • Rapid City, SD 808-872-1225 = College Station, TX 888-690-2218

LABORATORY ANALYTICAL REPORT

Prepared by Casper, WY Branch

Client:	Denison Mines USA Corp
Project:	1st Quarter Chloroform 2011
Lab ID:	C11020714-015
Client Sample ID:	TW4-22R

Report Date: 03/11/11 Collection Date: 02/22/11 09:44 DateReceived: 02/25/11 Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
MAJOR IONS				-			
Chloride	ND	mg/L		1		A4500-CI B	02/28/11 12·37 / Ir
Nitrogen, Nitrate+Nitrite as N	0.2	mg/L		0.1		E353.2	03/01/11 14:39 / dc
VOLATILE ORGANIC COMPOUNDS							
Carbon tetrachloride	ND	ug/L		1.0		SW8260B	03/01/11 02.25 / jlr
Chloroform	ND	ug/L		1.0		SW8260B	03/01/11 02.25 / jir
Chloromethane	ND	ug/L		1.0		SW8260B	03/01/11 02:25 / jir
Methylene chloride	ND	ug/L		1.0		SW8260B	03/01/11 02·25 / jir
Surr: 1,2-Dichlorobenzene-d4	97.0	%REC	٤	30-120		SW8260B	03/01/11 02.25 / jir
Surr Dibromofluoromethane	110	%REC	7	70-130		SW8260B	03/01/11 02·25 / jir
Surr: p-Bromofluorobenzene	105	%REC	8	30-120		SW8260B	03/01/11 02.25 / jlr
Surr: Toluene-d8	98 0	%REC	£	30-120		SW8260B	03/01/11 02:25 / jlr

 Report
 RL - Analyte reporting limit.

 Definitions:
 QCL - Quality control limit.

LABORATORY ANALYTICAL REPORT

Prepared by Casper, WY Branch

Client:	Denison Mines USA Corp	R
Project:	1st Quarter Chloroform 2011	Colle
Lab ID:	C11020540-007	Dat
Client Samp	le ID: TW4-23	

Report Date: 03/09/11 Collection Date: 02/16/11 09:44 DateReceived: 02/18/11 Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
MAJOR IONS							
Chlonde	44	mg/L		1		A4500-CI B	02/24/11 15.23 / lr
Nitrogen, Nitrate+Nitrite as N	ND	mg/L		0.1		E353 2	02/22/11 16·15 / dc
VOLATILE ORGANIC COMPOUNDS							
Carbon tetrachloride	ND	ug/L		1.0		SW8260B	02/25/11 03.39 / jlr
Chloroform	ND	ug/L		1.0		SW8260B	02/25/11 03·39 / jir
Chloromethane	ND	ug/L		1.0		SW8260B	02/25/11 03 [.] 39 / jir
Methylene chloride	ND	ug/L		1.0		SW8260B	02/25/11 03:39 / jir
Surr: 1,2-Dichlorobenzene-d4	108	%REC	8	30-120		SW8260B	02/25/11 03·39 / jlr
Surr. Dibromofluoromethane	111	%REC	7	70-130		SW8260B	02/25/11 03.39 / jlr
Surr: p-Bromofluorobenzene	107	%REC	8	30-120		SW8260B	02/25/11 03·39 / jlr
Surr: Toluene-d8	90.0	%REC	8	30-120		SW8260B	02/25/11 03·39 / jir

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit.

Halena, MT 877-472-0711 + Billings, MT 800-735-4489 + Casper, WY 888-235-0515 Gillette, WY 866-566-7175 + Rapid City, SD 888-572-1225 + College Station, TX 888-650-2218

LABORATORY ANALYTICAL REPORT

Prepared by Casper, WY Branch

Client:	Denison Mines USA Corp
Project:	1st Quarter Chloroform 2011
Lab ID:	C11020540-006
Client Sample ID:	TW4-23R

Report Date: 03/09/11 Collection Date: 02/15/11 08:15 DateReceived: 02/18/11 Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
MAJOR IONS							
Chloride	ND	mg/L		1		A4500-CI B	02/24/11 15.22 / Ir
Nitrogen, Nitrate+Nitrite as N	ND	mg/L		0.1		E353.2	02/22/11 16.12 / dc
VOLATILE ORGANIC COMPOUNDS							
Carbon tetrachloride	ND	ug/L		1.0		SW8260B	02/25/11 03.03 / jlr
Chloroform	ND	ug/L		1.0		SW8260B	02/25/11 03:03 / jlr
Chloromethane	ND	ug/L		1.0		SW8260B	02/25/11 03:03 / jlr
Methylene chloride	ND	ug/L		10		SW8260B	02/25/11 03.03 / jlr
Surr: 1,2-Dichlorobenzene-d4	106	%REC	8	30-120		SW8260B	02/25/11 03·03 / jlr
Surr: Dibromofluoromethane	107	%REC	7	70-130		SW8260B	02/25/11 03 03 / jlr
Surr. p-Bromofluorobenzene	107	%REC	٤	30-120		SW8260B	02/25/11 03.03 / jlr
Surr Toluene-d8	89 0	%REC	8	30-120		SW8260B	02/25/11 03 [.] 03 / jir

 Report
 RL - Analyte reporting limit.

 Definitions:
 QCL - Quality control limit.

Helene, MT \$77-472-0711 * Billings, MT 800-735-4489 * Casper, WY 888-235-0515 Gillette, WY 868-686-7175 * Rapid City, SD 868-672-1225 = College Station, TX 888-690-2218

LABORATORY ANALYTICAL REPORT

Prepared by Casper, WY Branch

Client:	Denison Mines USA Corp	Report Date: 03/09/11
Project:	1st Quarter Chloroform 2011	Collection Date: 02/17/11 07:50
Lab ID:	C11020540-012	DateReceived: 02/18/11
Client Sample ID); TW4-24	Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
MAJOR IONS							
Chloride	1100	mg/L		1		A4500-CI B	02/24/11 15·58 / Ir
Nitrogen, Nitrate+Nitrite as N	31	mg/L	D	2		E353.2	02/22/11 16·35 / dc
VOLATILE ORGANIC COMPOUNDS							
Carbon tetrachioride	ND	ug/L		1.0		SW8260B	02/25/11 19.45 / jlr
Chloroform	1.8	ug/L		1.0		SW8260B	02/25/11 19.45 / jlr
Chloromethane	ND	ug/L		1.0		SW8260B	02/25/11 19·45 / jlr
Methylene chloride	ND	ug/L		1.0		SW8260B	02/25/11 19 45 / jlr
Surr 1,2-Dichlorobenzene-d4	109	%REC	8	80-120		SW8260B	02/25/11 19 45 / jir
Surr. Dibromofluoromethane	117	%REC	-	70-130		SW8260B	02/25/11 19 45 / jlr
Surr: p-Bromofluorobenzene	105	%REC	8	80-120		SW8260B	02/25/11 19 45 / jlr
Surr. Toluene-d8	84.0	%REC	8	80-120		SW8260B	02/25/11 19 [.] 45 / jir

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. D - RL increased due to sample matrix.

Helena, MT 877-472-0711 * Billings, MT 808-735-4489 * Casper, WY 888-235-0515 Gillette, WY 866-666-7175 * Rapid City, SD 888-672-1225 * College Station, TX 888-680-2218

LABORATORY ANALYTICAL REPORT

Prepared by Casper, WY Branch

Client:Denison Mines USA CorpProject:1st Quarter Chloroform 2011Lab ID:C11020540-008Client Sample ID:TW4-25

Report Date: 03/09/11 Collection Date: 02/16/11 10.13 DateReceived: 02/18/11 Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
MAJOR IONS				_			
Chloride	315	mg/L		1		A4500-CI B	02/24/11 15:29 / Ir
Nitrogen, Nitrate+Nitrite as N	15	mg/L	D	1		E353.2	02/22/11 16:17 / dc
VOLATILE ORGANIC COMPOUNDS							
Carbon tetrachloride	ND	ug/L		1.0		SW8260B	02/25/11 04.14 / jlr
Chloroform	ND	ug/L		1.0		SW8260B	02/25/11 04.14 / jlr
Chloromethane	ND	ug/L		1.0		SW8260B	02/25/11 04 14 / jlr
Methylene chloride	ND	ug/L		1.0		SW8260B	02/25/11 04·14 / jłr
Surr. 1,2-Dichlorobenzene-d4	108	%REC	1	80-120		SW8260B	02/25/11 04.14 / jlr
Surr Dibromofluoromethane	109	%REC		70-130		SW8260B	02/25/11 04 14 / jlr
Surr. p-Bromofluorobenzene	108	%REC	1	80-120		SW8260B	02/25/11 04:14 / jlr
Surr: Toluene-d8	90.0	%REC	1	80-120		SW8260B	02/25/11 04:14 / jlr

Report Definitions:

RL - Analyte reporting limit. QCL - Quality control limit. D - RL increased due to sample matrix. MCL - Maximum contaminant level. ND - Not detected at the reporting limit.

Page 10 of 26

LABORATORY ANALYTICAL REPORT

Prepared by Casper, WY Branch

Client:	Denison Mines USA Corp	Report Date: 03/11/11
Project:	1st Quarter Chloroform 2011	Collection Date: 02/22/11 08:00
Lab ID:	C11020714-020	DateReceived: 02/25/11
Client Sample ID:	TW4-26	Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
MAJOR IONS							
Chloride	30	mg/L		1		A4500-CI B	02/28/11 12.48 / Ir
Nitrogen, Nitrate+Nitrite as N	10	mg/L	D	1		E353.2	03/01/11 14·59 / dc
VOLATILE ORGANIC COMPOUNDS							
Carbon tetrachloride	ND	ug/L		1.0		SW8260B	03/03/11 02.06 / jlr
Chloroform	2.0	ug/L		1.0		SW8260B	03/03/11 02·06 / jlr
Chloromethane	ND	ug/L		1.0		SW8260B	03/03/11 02.06 / jlr
Methylene chloride	ND	ug/L		1.0		SW8260B	03/03/11 02:06 / jir
Surr: 1,2-Dichlorobenzene-d4	107	%REC	1	80-120		SW8260B	03/03/11 02.06 / jlr
Surr: Dibromofluoromethane	112	%REC	•	70-130		SW8260B	03/03/11 02.06 / jir
Surr: p-Bromofluorobenzene	107	%REC	ł	80-120		SW8260B	03/03/11 02.06 / jir
Surr: Toluene-d8	101	%REC	1	80-120		SW8260B	03/03/11 02·06 / jlr

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. D - RL increased due to sample matrix. MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Helena, MT 877-472-0711 + Billings, MT 800-735-4489 + Casper, WY 888-235-0515 Gillette, WY 865-565-7175 • Rapid City, SD 898-672-1225 + College Station, TX 888-690-2218

LABORATORY ANALYTICAL REPORT

Prepared by Casper, WY Branch

Client:	Denison Mines USA Corp	Report Date
Project:	1st Quarter Chloroform 2011	Collection Date
Lab ID:	C11020714-017	DateReceived
Client Sample	ID: TW4-60	Matrix

Report Date: 03/11/11 Collection Date: 02/23/11 14:50 DateReceived: 02/25/11 Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
MAJOR IONS							
Chloride	ND	mg/L		1		A4500-CI B	02/28/11 12.40 / lr
Nitrogen, Nitrate+Nitrite as N	ND	mg/L		0.1		E353.2	03/01/11 14:44 / dc
VOLATILE ORGANIC COMPOUNDS							
Carbon tetrachloride	ND	ug/L		1.0		SW8260B	03/03/11 00:17 / jlr
Chloroform	ND	ug/L		1.0		SW8260B	03/03/11 00:17 / jlr
Chloromethane	ND	ug/L		1.0		SW8260B	03/03/11 00.17 / jlr
Methylene chloride	ND	ug/L		1.0		SW8260B	03/03/11 00:17 / jir
Surr. 1,2-Dichlorobenzene-d4	104	%REC	٤	30-120		SW8260B	03/03/11 00 [.] 17 / jir
Surr: Dibromofluoromethane	114	%REC	7	70-130		SW8260B	03/03/11 00:17 / jir
Surr p-Bromofluorobenzene	108	%REC	ε	30-120		SW8260B	03/03/11 00:17 / jlr
Surr. Toluene-d8	102	%REC	٤	30-120		SW8260B	03/03/11 00:17 / jir

ReportRL - Analyte reporting limit.Definitions:QCL - Quality control limit.

~

Halena, MT 977-472-0711 * Billings, MT 800-735-4489 * Caspar, WY 888-235-0515 Gillette, WY 866-566-7175 * Rapid City, SD 898-672-1225 * College Station, TX 888-660-2218

LABORATORY ANALYTICAL REPORT

Prepared by Casper, WY Branch

Client:	Denison Mines USA Corp	Report Date:	03/09/11
Project:	1st Quarter Chloroform 2011	Collection Date:	02/17/11 10.15
Lab ID:	C11020540-015	DateReceived:	02/18/11
Client Sample ID:	TW4-65	Matrix:	Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
MAJOR IONS							
Chloride	134	mg/L		1		A4500-CI B	02/24/11 16 [.] 06 / Ir
Nitrogen, Nitrate+Nitrite as N	17	mg/L	D	2		E353.2	02/22/11 16 40 / dc
VOLATILE ORGANIC COMPOUNDS							
Carbon tetrachloride	15	ug/L		1.0		SW8260B	02/26/11 06 27 / jlr
Chloroform	5600	ug/L	D	1000		SW8260B	02/25/11 20 [.] 57 / jlr
Chloromethane	ND	ug/L		1.0		SW8260B	02/26/11 06.27 / jlr
Methylene chloride	ND	ug/L		1.0		SW8260B	02/26/11 06 27 / jlr
Surr 1,2-Dichlorobenzene-d4	108	%REC		80-120		SW8260B	02/26/11 06 27 / jlr
Surr: Dibromofluoromethane	106	%REC		70-130		SW8260B	02/26/11 06 [.] 27 / jlr
Surr. p-Bromofluorobenzene	107	%REC		80-120		SW8260B	02/26/11 06.27 / jlr
Surr. Toluene-d8	85 0	%REC		80-120		SW8260B	02/26/11 06:27 / jlr

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. D - RL increased due to sample matrix

Helena, MT 977-472-0711 * Billings, MT 800-735-4489 * Casper, WY 888-235-0515 Gillette, WY 886-686-7175 * Rapid City, SD 808-672-1225 * College Station, TX 688-690-2218

LABORATORY ANALYTICAL REPORT

Prepared by Casper, WY Branch

Client:	Denison Mines USA Corp	Report Date: 03/11/11
Project:	1st Quarter Chloroform 2011	Collection Date: 02/23/11 08:40
Lab ID:	C11020714-018	DateReceived: 02/25/11
Client Sample ID:	: TW4-70	Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
MAJOR IONS							
Chloride	65	mg/L		1		A4500-CI B	02/28/11 12:43 / Ir
Nitrogen, Nitrate+Nitrite as N	9	mg/L	D	1		E353.2	03/01/11 14·54 / dc
VOLATILE ORGANIC COMPOUNDS							
Carbon tetrachloride	ND	ug/L		1.0		SW8260B	03/03/11 04:30 / jlr
Chloroform	810	ug/L	D	100		SW8260B	03/03/11 00:53 / jlr
Chloromethane	ND	ug/L		1.0		SW8260B	03/03/11 04·30 / jlr
Methylene chloride	ND	ug/L		1.0		SW8260B	03/03/11 04·30 / jlr
Surr: 1,2-Dichlorobenzene-d4	108	%REC		80-120		SW8260B	03/03/11 04·30 / jlr
Surr Dibromofluoromethane	131	%REC	S	70-130		SW8260B	03/03/11 04.30 / jlr
Surr: p-Bromofluorobenzene	105	%REC		80-120		SW8260B	03/03/11 04.30 / jlr
Surr: Toluene-d8	102	%REC		80-120		SW8260B	03/03/11 04:30 / jlr

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. D - RL increased due to sample matrix.

LABORATORY ANALYTICAL REPORT

Prepared by Casper, WY Branch

Client: Project: Lab ID:	Denison Mines USA 1st Quarter Chlorofor C11020540-016	•		Collection Date DateReceived				
Client Sample ID:	Temp Blank							rix: Aqueous
Analyses		Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL PROP Temperature	ERTIES	3.0	ĉ				E170.1	02/18/11 09 20 / kbh

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit.

Helena, MT 877-472-0711 * Billings, MT 800-735-4489 * Casper, WY 888-235-0515 Gillette, WY 868-686-7175 * Rapid City, SD 888-672-1225 * College Station, TX 888-690-2218

LABORATORY ANALYTICAL REPORT

Prepared by Casper, WY Branch

Client:	Denison Mines USA Corp	Report Date:	03/11/11
Project:	1st Quarter Chloroform 2011	Collection Date:	02/23/11
Lab ID:	C11020714-024	DateReceived:	02/25/11
Client Sample ID:	Temp Blank	Matrix:	Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL PROPERTIES Temperature	2.4	°C				E170.1	02/25/11 10 [.] 15 / kbh

 Report
 RL - Analyte reporting limit.

 Definitions:
 QCL - Quality control limit.

LABORATORY ANALYTICAL REPORT

Prepared by Casper, WY Branch

Client:	Denison Mines USA Corp
Project:	1st Quarter Chloroform 2011
Lab ID:	C11020714-013
Client Sample ID:	Trip Blank 6092

Report Date: 03/11/11 Collection Date: 02/21/11 DateReceived: 02/25/11 Matrix: Aqueous

Analyses	Beeult		0		MCL/ QCL	Method	Analysis Date / By
	Result	Units	Qualifiers	RL	UL	Method	Allalysis Date / by
VOLATILE ORGANIC COMPOUNDS							
Carbon tetrachloride	ND	ug/L		1.0		SW8260B	03/01/11 01·13 / jir
Chloroform	ND	ug/L		1.0		SW8260B	03/01/11 01·13 / jir
Chloromethane	ND	ug/L		1.0		SW8260B	03/01/11 01.13 / jlr
Methylene chloride	ND	ug/L		1.0		SW8260B	03/01/11 01·13 / jir
Surr. 1,2-Dichlorobenzene-d4	103	%REC	8	30-120		SW8260B	03/01/11 01·13 / jir
Surr: Dibromofluoromethane	108	%REC	7	70-130		SW8260B	03/01/11 01.13 / jlr
Surr. p-Bromofluorobenzene	106	%REC	8	30-120		SW8260B	03/01/11 01:13 / jlr
Surr: Toluene-d8	100	%REC	8	30-120		SW8260B	03/01/11 01:13 / jlr

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit.

Hatena, MT 677-472-0711 • Billings, MT 600-735-4489 • Casper, WY 888-235-0515 Gillette, WY 666-666-7175 • Rapid City, SD 868-672-1225 • College Station, TX 888-690-2218

LABORATORY ANALYTICAL REPORT

Prepared by Casper, WY Branch

Client:Denison Mines USA CorpProject:1st Quarter Chloroform 2011Lab ID:C11020540-013Client Sample ID:Trip Blank 6092

Report Date: 03/09/11 Collection Date: 02/14/11 DateReceived: 02/18/11 Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
VOLATILE ORGANIC COMPOUNDS							
Carbon tetrachloride	ND	ug/L		1.0		SW8260B	02/25/11 20:21 / jlr
Chloroform	ND	ug/L		1.0		SW8260B	02/25/11 20 21 / jlr
Chloromethane	ND	ug/L		1.0		SW8260B	02/25/11 20.21 / jlr
Methylene chloride	ND	ug/L		1.0		SW8260B	02/25/11 20 21 / jlr
Surr. 1,2-Dichlorobenzene-d4	115	%REC	ξ	30-120		SW8260B	02/25/11 20:21 / jlr
Surr Dibromofluoromethane	109	%REC	7	70-130		SW8260B	02/25/11 20.21 / jlr
Surr p-Bromofluorobenzene	111	%REC	8	30-120		SW8260B	02/25/11 20:21 / jlr
Surr: Toluene-d8	83.0	%REC	8	30-120		SW8260B	02/25/11 20.21 / jlr

 Report
 RL - Analyte reporting limit.

 Definitions:
 QCL - Quality control limit.

MCL - Maximum contaminant level. ND - Not detected at the reporting limit

Halena, MT 877-472-0711 + Billings, MT 800-735-4489 + Casper, WY 888-235-9515 Gillette, WY 858-586-7175 . Rapid City, SD 888-572-1225 . College Station, TX 888-590-2218

ANALYTICAL SUMMARY REPORT

March 09, 2011

Denison Mines USA Corp 6425 S Hwy 191 Blanding, UT 84511

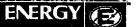
Workorder No.: C11020540 Quote ID: C2975 - Chloroform Sampling

Project Name: 1st Quarter Chloroform 2011

Energy Laboratories, Inc. Casper WY received the following 16 samples for Denison Mines USA Corp on 2/18/2011 for analysis

Sample ID	Client Sample ID	Collect Date Re	eceive Date	Matrix	Test
C11020540-001	TW4-3R	02/14/11 10:00	02/18/11	Aqueous	Chloride Nitrogen, Nitrate + Nitrite SW8260B VOCs, Standard List
C11020540-002	TW4-3	02/15/11 13:10	02/18/11	Aqueous	Same As Above
C11020540-003	TW4-12	02/15/11 13:25	02/18/11	Aqueous	Same As Above
C11020540-004	TW4-13	02/15/11 13:36	02/18/11	Aqueous	Same As Above
C11020540-005	TW4-14	02/15/11 13:46	02/18/11	Aqueous	Same As Above
C11020540-006	TW4-23R	02/15/11 08:15	02/18/11	Aqueous	Same As Above
C11020540-007	TW4-23	02/16/11 09:44	02/18/11	Aqueous	Same As Above
C11020540-008	TW4-25	02/16/11 10:13	02/18/11	Aqueous	Same As Above
C11020540-009	TW4-8	02/16/11 10:40	02/18/11	Aqueous	Same As Above
C11020540-010	TW4-9R	02/16/11 11:53	02/18/11	Aqueous	Same As Above
C11020540-011	TW4-9	02/17/11 07:40	02/18/11	Aqueous	Same As Above
C11020540-012	TW4-24	02/17/11 07:50	02/18/11	Aqueous	Same As Above
C11020540-013	Trip Blank 6092	02/14/11 00.00	02/18/11	Aqueous	SW8260B VOCs, Standard List
C11020540-014	TW4-19	02/17/11 10:15	02/18/11	Aqueous	Chloride Nitrogen, Nitrate + Nitrite SW8260B VOCs, Standard List
C11020540-015	TW4-65	02/17/11 10:15	02/18/11	Aqueous	Same As Above
C11020540-016	Temp Blank	02/17/11 00:00	02/18/11	Aqueous	Temperature

This report was prepared by Energy Laboratories, Inc , 2393 Salt Creek Hwy., Casper, WY 82601. Any exceptions or problems with the analyses are noted in the Laboratory Analytical Report, the QA/QC Summary Report, or the Case Narrative.


The results as reported relate only to the item(s) submitted for testing.

If you have any questions regarding these test results, please call

Report Approved By:

Report Proofing Specialist

Digitally signed by Kathy Hamre Date: 2011.03.09 12:21:47 -07:00

CLIENT: Denison Mines USA Corp

Project: 1st Quarter Chloroform 2011

Sample Delivery Group: C11020540

ORIGINAL SAMPLE SUBMITTAL(S)

All original sample submittals have been returned with the data package.

SAMPLE TEMPERATURE COMPLIANCE: 4℃ (±2℃)

Temperature of samples received may not be considered properly preserved by accepted standards. Samples that are hand delivered immediately after collection shall be considered acceptable if there is evidence that the chilling process has begun.

GROSS ALPHA ANALYSIS

Method 900.0 for gross alpha and gross beta is intended as a drinking water method for low TDS waters Data provided by this method for non potable waters should be viewed as inconsistent.

RADON IN AIR ANALYSIS

The desired exposure time is 48 hours (2 days) The time delay in returning the canister to the laboratory for processing should be as short as possible to avoid excessive decay. Maximum recommended delay between end of exposure to beginning of counting should not exceed 8 days.

SOIL/SOLID SAMPLES

All samples reported on an as received basis unless otherwise indicated.

ATRAZINE, SIMAZINE AND PCB ANALYSIS

Data for PCBs, Atrazine and Simazine are reported from EPA 525.2. PCB data reported by ELI reflects the results for seven individual Aroclors When the results for all seven are ND (not detected), the sample meets EPA compliance criteria for PCB monitoring.

SUBCONTRACTING ANALYSIS

Subcontracting of sample analyses to an outside laboratory may be required. If so, ENERGY LABORATORIES will utilize its branch laboratories or qualified contract laboratories for this service. Any such laboratories will be indicated within the Laboratory Analytical Report

BRANCH LABORATORY LOCATIONS

eli-b - Energy Laboratories, Inc - Billings, MT eli-g - Energy Laboratories, Inc. - Gillette, WY eli-h - Energy Laboratories, Inc - Helena, MT eli-r - Energy Laboratories, Inc. - Rapid City, SD eli-t - Energy Laboratories, Inc. - College Station, TX

CERTIFICATIONS:

USEPA: WY00002, Radiochemical WY00937; FL-DOH NELAC: E87641, Radiochemical E871017; California: 02118CA; Oregon: WY200001; Utah: 3072350515; Virginia: 00057; Washington. C1903

ISO 17025 DISCLAIMER: The results of this Analytical Report relate only to the items submitted for analysis.

ENERGY LABORATORIES, INC. - CASPER,WY certifies that certain method selections contained in this report meet requirements as set forth by the above accrediting authorities. Some results requested by the client may not be covered under these certifications All analysis data to be submitted for regulatory enforcement should be certified in the sample state of origin. Please verify ELI's certification coverage by visiting www.energylab.com

ELI appreciates the opportunity to provide you with this analytical service. For additional information and services visit our web page www energylab.com.

Report Date: 03/09/11

CASE NARRATIVE

Prepared by Casper, WY Branch

Client: Denison Mines USA Corp

Project: 1st Quarter Chloroform 2011

Report Date: 03/09/11 Work Order: C11020540

Analyte	Count	Result	Units	RL	%REC	Low Lim	it	High Limit	RPD	RPDLimit	Qual
Method: A4500-CI B									Bat	ch: 110224-0	L-TTR-W
Sample ID: MBLK9-110224	Me	ethod Blank				Run. TITI	RAT	TION_110224A		02/24	/11 15.08
Chloride		ND	mg/L	1.0							
Sample ID: C11020540-009AMS	Sa Sa	mple Matrix	Spike			Run TITI	RAT	FION_110224A		02/24	/11 15 [.] 46
Chloride		229	mg/L	10	100	90	0	110			
Sample ID: C11020540-009AMS	D Sa	mple Matrix	Spike Duplicate			Run: TITI	RAT	ION_110224A		02/24	/11 15.48
Chloride		231	mg/L	1.0	101	90	0	110	0.7	10	
Sample ID: C11020540-015AMS	s Sa	mple Matrix	Spike			Run [.] TITI	RAT	[ION_110224A		02/24	/11 16·28
Chloride		313	mg/L	1.0	101	90	0	110			
Sample ID: C11020540-015AMS	D Sa	mple Matrix	Spike Duplicate			Run: TITI	RAT	ION_110224A		02/24	/11 16:31
Chloride		312	mg/L	1.0	100	90	0	110	0.6	10	
Sample ID: LCS35-110224	La	boratory Cor	trol Sample			Run [,] TITI	RAT	[ION_110224A		02/24	/11 16 33
Chloride		3550	mg/L	1.0	100	90	0	110			

Prepared by Casper, WY Branch

Client: Denison Mines USA Corp

Project: 1st Quarter Chloroform 2011

Report Date: 03/09/11 Work Order: C11020540

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E353.2						· · · · · · · · · · · · · · · · · · ·			Batch	R142962
Sample ID: MBLK-1	Ме	thod Blank				Run. TECH	NICON_110222A	۱	02/22	/11 12:35
Nitrogen, Nitrate+Nitrite as N		ND	mg/L	0.10						
Sample ID: LCS-2	Lat	poratory Cor	troi Sample			Run: TECH	NICON_1102224	۱	02/22	/11 12.37
Nitrogen, Nitrate+Nitnte as N		2 52	mg/L	0.10	101	90	110			
Sample ID: C11020540-001BMS	Sa	mple Matrix	Spike			Run. TECH	NICON_1102224	۱	02/22	/11 16.05
Nitrogen, Nitrate+Nitrite as N		2.29	mg/L	0.10	104	90	110			
Sample ID: C11020540-001BMS) Sa	mple Matrix	Spike Duplicate			Run: TECH	NICON_110222A	۱.	02/22	/11 16.07
Nitrogen, Nitrate+Nitrite as N		2.34	mg/L	0.10	107	90	110	2.2	10	
Sample ID: C11020541-001CMS	Sa	mple Matrix	Spike			Run: TECH	NICON_1102224	۱	02/22	/11 16.45
Nitrogen, Nitrate+Nitrite as N		3.81	mg/L	0.10	100	90	110			
Sample ID: C11020541-001CMSE	D Sa	mple Matrix	Spike Duplicate			Run [.] TECH	NICON_1102224	•	02/22	/11 16:47
Nitrogen, Nitrate+Nitrite as N		3.84	mg/L	0.10	101	90	110	0.8	10	

Prepared by Casper, WY Branch

Client: Denison Mines USA Corp

Project: 1st Quarter Chloroform 2011

Report Date: 03/09/11 Work Order: C11020540

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: SW8260B									Batch.	R14308
Sample ID: 24-Feb-11_LCS_5	8 La	boratory Co	ntrol Sample			Run [.] 5975V	OC1_110224B		02/24/	/11 12 44
Carbon tetrachloride		9.6	ug/L	1.0	96	70	130			
Chloroform		9.5	ug/L	1.0	95	70	130			
Chloromethane		9.6	ug/L	1.0	96	70	130			
Methylene chloride		8.9	ug/L	1.0	89	70	130			
Surr 1,2-Dichlorobenzene-d4				1.0	97	80	120			
Surr Dibromofluoromethane				1.0	92	70	130			
Surr: p-Bromofluorobenzene				1.0	97	80	130			
Surr. Toluene-d8				1.0	96	80	120			
Sample ID: 24-Feb-11_MBLK_7	8 Me	thod Blank				Run. 5975V	OC1_110224B		02/24/	/11 13 ·55
Carbon tetrachloride		ND	ug/L	1.0						
Chloroform		ND	ug/L	1.0						
Chloromethane		ND	ug/L	1.0						
Methylene chloride		ND	ug/L	1.0						
Surr: 1,2-Dichlorobenzene-d4				1.0	106	80	120			
Surr Dibromofluoromethane				1.0	94	70	130			
Surr: p-Bromofluorobenzene				1.0	103	80	120			
Surr: Toluene-d8				1.0	88	80	120			
Sample ID: C11020525-005GMS	8 Sa	mple Matrix	Spike			Run: 5975V	OC1_110224B		02/24/	/11 19.19
Carbon tetrachloride		110	ug/L	10	114	70	130			
Chloroform		110	ug/L	10	114	70	130			
Chloromethane		100	ug/L	10	104	70	130			
Methylene chlonde		100	ug/L	10	102	70	130			
Surr 1,2-Dichlorobenzene-d4				1.0	97	80	120			
Surr Dibromofluoromethane				1.0	104	70	130			
Surr: p-Bromofluorobenzene				1.0	97	80	120			
Surr: Toluene-d8				1.0	97	80	120			
Sample ID: C11020525-005GMSI	D 8 Sa	mple Matrix	Spike Duplicate			Run: 5975V	OC1_110224B		02/24/	/11 19 55
Carbon tetrachloride		110	ug/L	10	106	70	130	6.9	20	
Chloroform		110	ug/L	10	108	70	130	5.4	20	
Chloromethane		100	ug/L	10	103	70	130	0.8	20	
Methylene chloride		96	ug/L	10	96	70	130	6.9	20	
Surr 1,2-Dichlorobenzene-d4				10	98	80	120	0.0	10	
Surr: Dibromofluoromethane				1.0	97	70	130	0.0	10	
Surr p-Bromofluorobenzene				1.0	98	80	120	0.0	10	
Surr: Toluene-d8				1.0	96	80	120	00	10	

ND - Not detected at the reporting limit.

Prepared by Casper, WY Branch

Client: Denison Mines USA Corp

Project: 1st Quarter Chloroform 2011

Report Date: 03/09/11 Work Order: C11020540

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: SW8260B									Batch.	R143126
Sample ID: 25-Feb-11_LCS_4	8 Labo	ratory Cor	trol Sample			Run 5975\	/OC1_110225B		02/25/	/11 15.01
Carbon tetrachloride		11	ug/L	1.0	108	70	130			
Chloroform		10	ug/L	1.0	104	70	130			
Chloromethane		11	ug/L	10	108	70	130			
Methylene chloride		9.6	ug/L	1.0	96	70	130			
Surr. 1,2-Dichlorobenzene-d4				1.0	94	80	120			
Surr Dibromofluoromethane				1.0	90	70	130			
Surr p-Bromofluorobenzene				1.0	98	80	130			
Surr. Toluene-d8				1.0	92	80	120			
Sample ID: 25-Feb-11_MBLK_6	8 Meth	od Blank				Run [.] 5975\	/OC1_110225B		02/25/	/11 16 [.] 12
Carbon tetrachloride		ND	ug/L	1.0						
Chloroform		ND	ug/L	1.0						
Chloromethane		ND	ug/L	1.0						
Methylene chloride		ND	ug/L	1.0						
Surr 1,2-Dichlorobenzene-d4				1.0	108	80	120			
Surr Dibromofluoromethane				1.0	99	70	130			
Surr p-Bromofluorobenzene				1.0	106	80	120			
Surr Toluene-d8				10	83	80	120			
Sample ID: C11020540-015CMS	8 Sam	ple Matrix	Spike			Run: 5975\	/OC1_110225B		02/25/	/11 21.32
Carbon tetrachioride		12000	ug/L	1000	122	70	130			
Chloroform		18000	ug/L	1000	127	70	130			
Chloromethane		12000	ug/L	1000	117	70	130			
Methylene chloride		11000	ug/L	1000	108	70	130			
Surr 1,2-Dichlorobenzene-d4				1.0	97	80	120			
Surr Dibromofluoromethane				10	104	70	130			
Surr p-Bromofluorobenzene				1.0	97	80	120			
Surr. Toluene-d8				1.0	93	80	120			
Sample ID: C11020540-015CMSI	D 8 Sam	ple Matrix	Spike Duplicate	•		Run. 5975V	OC1_110225B		02/25/	/11 22.08
Carbon tetrachloride		12000	ug/L	1000	115	70	130	5.7	20	
Chloroform		17000	ug/L	1000	118	70	130	5.1	20	
Chloromethane		12000	ug/L	1000	115	70	130	1.7	20	
Methylene chloride		11000	ug/L	1000	106	70	130	1.9	20	
Surr 1,2-Dichlorobenzene-d4			-	1.0	99	80	120	0.0	10	
Surr: Dibromofluoromethane				1.0	102	70	130	0.0	10	
Surr. p-Bromofluorobenzene				10	100	80	120	0.0	10	
Surr Toluene-d8				10	92	80	120	00	10	

Prepared by Casper, WY Branch

Client: Denison Mines USA Corp

Project: 1st Quarter Chloroform 2011

Report Date: 03/09/11 Work Order: C11020540

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: SW8260B									Batch	R143162
Sample ID: 022811_LCS_4	5 La	aboratory Cor	ntrol Sample			Run. SATU	RNCA_110228A		02/28/	/11 14:25
Chloroform		12	ug/L	1.0	121	70	130			
Surr: 1,2-Dichlorobenzene-d4				1.0	101	80	120			
Surr Dibromofluoromethane				1.0	93	70	130			
Surr p-Bromofluorobenzene				1.0	115	80	130			
Surr. Toluene-d8				1.0	102	80	120			
Sample ID: 022811_MBLK_6	5 M	ethod Blank				Run. SATU	RNCA_110228A		02/28/	/11 15 37
Chioroform		ND	ug/L	1.0						
Surr. 1,2-Dichlorobenzene-d4				1.0	101	80	120			
Surr. Dibromofluoromethane				10	93	70	130			
Surr: p-Bromofluorobenzene				1.0	106	80	120			
Surr: Toluene-d8				1.0	104	80	120			
Sample ID: C11020714-012CMS	5 Sa	ample Matrix	Spike			Run [.] SATU	RNCA_110228A		02/28/	/11 22.12
Chloroform		48000	ug/L	1000	165	70	130			S
Surr. 1,2-Dichlorobenzene-d4			-	1.0	97	80	120			
Surr. Dibromofluoromethane				1.0	109	70	130			
Surr: p-Bromofluorobenzene				1.0	110	80	120			
Surr: Toluene-d8				1.0	103	80	120			
- Spike recovery is high. This is a ma	trix related	bias since the	MS MSD pair both ex	chibit this s	ame beha	vior yet have a	an acceptable RPD			
Sample ID: C11020714-012CMSI	D 5 Sa	ample Matrix	Spike Duplicate			Run: SATU	RNCA_110228A		02/28/	/11 22 48
Chloroform		45000	ug/L	1000	137	70	130	6.0	20	S
Surr. 1,2-Dichlorobenzene-d4				1.0	99	80	120	0.0	10	
Surr Dibromofluoromethane				1.0	108	70	130	00	10	
Surr p-Bromofluorobenzene				1.0	108	80	120	0.0	10	
Surr: Toluene-d8				1.0	102	80	120	0.0	10	

- Spike recovery is high This is a matrix related bias since the MS MSD pair both exhibit this same behavior yet have an acceptable RPD

Qualifiers:

RL - Analyte reporting limit.

S - Spike recovery outside of advisory limits.

ND - Not detected at the reporting limit.

Workorder Receipt Checklist

Denison Mines USA Corp

ENERGY 2

Login completed by: Edith McPike		Date	Received: 2/18/2011
Reviewed by: BL2000\kschroeder		Re	ceived by: ha
Reviewed Date: 2/18/2011		Car	rier name: FedEx
Shipping container/cooler in good condition?	Yes 🗸	No 🗌	Not Present
Custody seals intact on shipping container/cooler?	Yes 🗹	No 🗌	Not Present
Custody seals intact on sample bottles?	Yes 🗌	No 🗌	Not Present
Chain of custody present?	Yes 🗹	No 🗍	
Chain of custody signed when relinquished and received?	Yes 🗹	No 🗌	
Chain of custody agrees with sample labels?	Yes 🗹	No 🗌	
Samples in proper container/bottle?	Yes 🗹	No 📋	
Sample containers intact?	Yes 🗹	No 🗌	
Sufficient sample volume for indicated test?	Yes 🗹	No 🗌	
All samples received within holding time?	Yes 🗹	No 📋	
Container/Temp Blank temperature	3°C On Ice		
Water - VOA vials have zero headspace?	Yes 🗹	No 🗌	No VOA vials submitted
Water - pH acceptable upon receipt?	Yes 🗹	No 🔲	Not Applicable

Contact and Corrective Action Comments

None

ENERGY	Chain d	of Cust	tody an	nd /	Anal	ytic	al R	equ	ues	st R	ecc	ord		Pag	ge of
LABORATORIES			PLEASE F	PRIN	T (Pr	ovide a	as muq	<u>ch Inf</u>	orma	ation a	IS PO	ssible	<u>.)</u>		
Company Name:			Project Nam	-		-		-		• -			de Origin	1	tate Compliance:
Denison Mines Report Mail Address: PO BO2			lst Q	var	ter	<u>Ch</u>	loro	for	<u>~</u>	20	11	l	UT	Yes 🕅	
Report Mail Address: PO Box	< 809		Contact Nar			Pho	ne/Fax:		•	~~~	•	Emai	l:	Sampler: (Please Print)	
Blanching, Invoice Address. Same	UT 84	511	Ryan				135	61	8 2	127	\ 				rin Palmer
Invoice Address.			Invoice Con									Purc	nase Order:	Quote	Bottle Order:
Same				Sau	ne										
Special Report/Formats:			rers B O DW Other er	A S		sis i	REQU	JES			LT)	R	Contact ELI prior RUSH sample su for charges and scheduling – See	bmittal	Shipped by: FCCL EX Cooler (D(s):
	EDD/EDT(Ele Format:	ctronic Data)	of Contair A W S V Ir Solls/So Bloassay hking Wat	C 297						ATTACHED	(T) bnuo	U	Instruction Page Comments:		Cuent Receipt Temp 3°C
State: Other:	LEVEL IV NELAC		Nurrtber of Containers Sample Type. A W S V B O DV Air Water Soils/Solids <u>V</u> egetation Bloassay <u>O</u> ther DW - Drinking Water	0+0 #						SEE ATT	Standard Turnaround (TAT)	S			On Ice: Y N Custody Seal On Bottle Y N On Cooler Y N
SAMPLE IDENTIFICATION (Name, Location, Interval, etc.)	Collection Date	Collection Time	MATRIX	g							St	н			Intact () N Signature () N Malch () N
TWY-3R	2-14-11	1000	500	X					_						≫
² TW4-3	2.15.11		5w	X							ļ				OMI
3 TW4-12	2.15.11	1325	SW	X											
1 TW4-13	2-15-11	1336	5w	X											NSI I
5 TW4-14	2-15-11		5W	X											
"TW4-23R	2.15.11	0815	5W	X											<u>ar</u> 0
1 TW4-23	2-16-11		5w	X											AV.
1 TW 4.25	2-16-11	1013	5w	X		\downarrow \downarrow						ļ	·		<u>HO</u>
1W4.8	2-16-11	1040	50	X							1	L			
"TW4-9R	2-16-11	1153	SW	X											£11020541
Custody Relinquished by (print).	Date/Tit		Signe	ature			Kecerv	ed by (p	nni)		(Date/Time	1	Signa	lure.
Record Relinquished by (print)	2/17/2013 Date/To	ne	Signa	ature				ed by (p				Date/Time		Signa	iture
Gianod	Return to Client:		Lab Dispo	sal:			Réceiv	red by L	aborat	ory:		Date/Time	0.11 970	Signa	Recemen

Page 25 of 26

In certain circumstances, samples submitted to Energy Laboratories, Inc. may be subcontracted to other certified laboratories in order to complete the analysis requested. This serves as notice of this possibility. All sub-contract data will be clearly notated on your analytical report Visit our web site at <u>www.energylab.com</u> for additional information, downloadable fee schedule, forms, and links.

ENERGY	Chain o	of Cust	-			-		-						Pa	ge of
Company Name:			PLEASE I Project Nan	PRIN De. P	IT (Pi WS. Pa	ovide	as mu	ch Info	ormati	on as	s pos		.) de Origin	EPA/S	itate Compliance:
Denison Mine	-5		lst Q					ofo	r.M.	20	N			Yes D	•
Report Mail Address: PO Box			Contact Na	me:		Ph	one/Fax:					Emai		Sampler: (Please Print)	
		,	Contact Nat Ryan	Pal.	mer		435	5 6	78 2	122	۱			Gar	nin Palmer
Blanding, u Invoice Address Same	JT 845	<u>.</u>	Invoice Con									Purch	ase Order:		/Bottle Order:
Same			Sa			•						r ui ci		QUOIC	
Special Report/Formats:				T		//@П@	requ						Contact ELI prior	to	shipped by: FLO EX
			er DW			1919 		UESI T					RUSH sample su		Coder (D(s);
			VSolids VSolids Say Oth Water	2975						ШЩ	(TAT)	R	for charges and scheduling – See Instruction Page	•	client
	EDD/EDT _{(Ek} Format: L F\/FL_IV		Number of Containers Sample Type: A W S V B O DM Air Water Solis/Solids Vegetation Bioassay Other DW - Drinking Water	620						ATTACHED	Standard Turnaround (TAT)	U	Comments:		Receipt Temp
State:										AT		S			On Ice: N
			Samp	vate						Ш Ш	andard				Custody Seal On Bottle Y N On Cooler N
SAMPLE IDENTIFICATION (Name, Location, Interval, etc.)	Collection Date	Collection Time	MATRIX	Bu Bu							S	Н			Intact (V) N Signature Match
1 TW4-9	2.17.11	0740	5w	X											
2 TW4-24	2-17-11			X											
³ Trip Blank 6092	2-14-11														
4			1									· · · · ·			S.
5 -TWH-19	2-17-11	1015	5W	X		+ 1				1 1					7)
° TW4-65	2-17-11	1015	5W	X											<u>الا</u>
TEMP BOUNK		121-				+			-						
8	<u> </u>	 		<u>†</u>	╞─┼─	++		++		╎─┤				_	ORATI
9	+			-		+		\vdash		+					0 M
10	+		1			+-1		╞╌╊		┼─┾			<u> </u>		MILK AACINI
Custody Relinquished by (pnnt):	Date/Ti	il	amer Hol	ature			Receiv	ied by (pr	int)			ate/Time]	Signa	iture
Record Relinquished by (print)	2/17/2011 Date/T	<u>1130 </u> me.	amer Hol Signi	ature	J—		Receiv	red by (pr	int)			ate/Time	,	Signe	sture.
MUST be	_								boratory:			ate/1ime		Signa	iture
Signed Sample Disposal:	Return to Client.		Lab Dispo	sai:								18		LACK	ermen

In certain circumstances, samples submitted to Energy Laboratories, Inc. may be subcontracted to other certified laboratories in order to complete the analysis requested. This serves as notice of this possibility. All sub-contract data will be clearly notated on your analytical report. Visit our web site at <u>www.energylab com</u> for additional information, downloadable fee schedule, forms, and links.

Helena, MT 877-472-0711 + Billings, MT 809-735-4489 + Casper, WY 888-235-0515 Gillette, WY 868-686-7175 + Rapid City, SD 888-872-1225 + College Station, TX 888-690-2218

ANALYTICAL SUMMARY REPORT

March 11, 2011

Denison Mines USA Corp 6425 S Hwy 191 Blanding, UT 84511

Workorder No.: C11020714

Quote ID: C2975 - Chloroform Sampling

Project Name: 1st Quarter Chloroform 2011

Energy Laboratories, Inc. Casper WY received the following 24 samples for Denison Mines USA Corp on 2/25/2011 for analysis.

Sample ID	Client Sample ID	Collect Date Receive Date	Matrix	Test
C11020714-001	TW4-22	02/23/11 07:40 02/25/11	Aqueous	Chloride Nitrogen, Nitrate + Nitrite SW8260B VOCs, Standard Lis
C11020714-002	TW4-6	02/23/11 08:00 02/25/11	Aqueous	Same As Above
C11020714-003	TW4-11	02/23/11 08:25 02/25/11	Aqueous	Same As Above
C11020714-004	TW4-15	02/23/11 13:30 02/25/11	Aqueous	Same As Above
C11020714-005	TW4-10	02/23/11 08:40 02/25/11	Aqueous	Same As Above
C11020714-006	TW4-7	02/23/11 09:00 02/25/11	Aqueous	Same As Above
C11020714-007	TW4-17	02/23/11 13:40 02/25/11	Aqueous	Same As Above
C11020714-008	TW4-1	02/24/11 08:00 02/25/11	Aqueous	Same As Above
C11020714-009	MW-4	02/23/11 12:55 02/25/11	Aqueous	Same As Above
C11020714-010	TW4-4	02/23/11 13:50 02/25/11	Aqueous	Same As Above
C11020714-011	TW4-2	02/24/11 08:15 02/25/11	Aqueous	Same As Above
C11020714-012	TW4-20	02/23/11 14:18 02/25/11	Aqueous	Same As Above
C11020714-013	Trip Blank 6092	02/21/11 00:00 02/25/11	Aqueous	SW8260B VOCs, Standard Lis
C11020714-014	TW4-16R	02/21/11 07:59 02/25/11	Aqueous	Chloride Nitrogen, Nitrate + Nitrite SW8260B VOCs, Standard Lis
C11020714-015	TW4-22R	02/22/11 09:44 02/25/11	Aqueous	Same As Above
C11020714-016	TW4-1R	02/23/11 09:50 02/25/11	Aqueous	Same As Above
C11020714-017	TW4-60	02/23/11 14:50 02/25/11	Aqueous	Same As Above
C11020714-018	TW4-70	02/23/11 08:40 02/25/11	Aqueous	Same As Above
C11020714-019	TW4-16	02/22/11 07:45 02/25/11	Aqueous	Same As Above
C11020714-020	TW4-26	02/22/11 08:00 02/25/11	Aqueous	Same As Above
C11020714-021	TW4-5	02/22/11 08:17 02/25/11	Aqueous	Same As Above
C11020714-022	TW4-18	02/22/11 08:40 02/25/11	Aqueous	Same As Above
C11020714-023	TW4-21	02/22/11 08:55 02/25/11	Aqueous	Same As Above
C11020714-024	Temp Blank	02/23/11 00:00 02/25/11	Aqueous	Temperature

Helene, MT 677-472-0711 * Billings, MT 800-735-4489 * Casper, WY 888-235-0515 Gillette, WY 866-586-7175 + Rapid City, SD 868-672-1225 + College Station, TX 868-690-2218

ANALYTICAL SUMMARY REPORT

This report was prepared by Energy Laboratories, Inc., 2393 Salt Creek Hwy., Casper, WY 82601. Any exceptions or problems with the analyses are noted in the Laboratory Analytical Report, the QA/QC Summary Report, or the Case Narrative.

The results as reported relate only to the item(s) submitted for testing

If you have any questions regarding these test results, please call.

Report Approved By:

Report Proofing Specialist

Digitally signed by Kathy Hamre Date: 2011.03.11 13:11:06 -07:00

CLIENT: Denison Mines USA Corp

Project: 1st Quarter Chloroform 2011

Sample Delivery Group: C11020714

ORIGINAL SAMPLE SUBMITTAL(S)

All original sample submittals have been returned with the data package.

SAMPLE TEMPERATURE COMPLIANCE: 4 °C (±2 °C)

Temperature of samples received may not be considered properly preserved by accepted standards. Samples that are hand delivered immediately after collection shall be considered acceptable if there is evidence that the chilling process has begun.

GROSS ALPHA ANALYSIS

Method 900.0 for gross alpha and gross beta is intended as a drinking water method for low TDS waters. Data provided by this method for non potable waters should be viewed as inconsistent

RADON IN AIR ANALYSIS

The desired exposure time is 48 hours (2 days). The time delay in returning the canister to the laboratory for processing should be as short as possible to avoid excessive decay. Maximum recommended delay between end of exposure to beginning of counting should not exceed 8 days.

SOIL/SOLID SAMPLES

All samples reported on an as received basis unless otherwise indicated.

ATRAZINE, SIMAZINE AND PCB ANALYSIS

Data for PCBs, Atrazine and Simazine are reported from EPA 525.2. PCB data reported by ELI reflects the results for seven individual Aroclors. When the results for all seven are ND (not detected), the sample meets EPA compliance criteria for PCB monitoring.

SUBCONTRACTING ANALYSIS

Subcontracting of sample analyses to an outside laboratory may be required. If so, ENERGY LABORATORIES will utilize its branch laboratories or qualified contract laboratories for this service. Any such laboratories will be indicated within the Laboratory Analytical Report.

BRANCH LABORATORY LOCATIONS

eli-b - Energy Laboratories, Inc. - Billings, MT eli-g - Energy Laboratories, Inc. - Gillette, WY eli-h - Energy Laboratories, Inc. - Helena, MT eli-r - Energy Laboratories, Inc. - Rapid City, SD eli-t - Energy Laboratories, Inc. - College Station, TX

CERTIFICATIONS:

USEPA: WY00002, Radiochemical WY00937; FL-DOH NELAC: E87641, Radiochemical E871017; California: 02118CA; Oregon: WY200001; Utah: 3072350515; Virginia: 00057; Washington: C1903

ISO 17025 DISCLAIMER: The results of this Analytical Report relate only to the items submitted for analysis.

ENERGY LABORATORIES, INC. - CASPER,WY certifies that certain method selections contained in this report meet requirements as set forth by the above accrediting authorities. Some results requested by the client may not be covered under these certifications. All analysis data to be submitted for regulatory enforcement should be certified in the sample state of origin Please verify ELI's certification coverage by visiting www.energylab.com

ELI appreciates the opportunity to provide you with this analytical service. For additional information and services visit our web page www.energylab.com.

Report Date: 03/11/11

CASE NARRATIVE

Prepared by Casper, WY Branch

Client: Denison Mines USA Corp

Project: 1st Quarter Chloroform 2011

Report Date: 03/11/11 Work Order: C11020714

Analyte	Count	Result	Units	RL	%REC	Low Limit	High	Limit	RPD	RPDLimit	Qual
Method: A4500-CI B									Bate	ch [.] 110228-C	L-TTR-W
Sample ID: MBLK9-110228	Me	thod Blank				Run: TITR	ATION_	110228A		02/28/	11 10.46
Chloride		ND	mg/L	1.0							
Sample ID: C11020664-001A	Sa	mple Matrix	Spike			Run. TITR		110228A		02/28/	/11 11:25
Chloride		232	mg/Ł	1.0	100	90		110			
Sample ID: C11020664-001A	Sa	mple Matrix	Spike Duplicate			Run: TITR	ATION_	110228A		02/28/	/11 11:46
Chloride		234	mg/L	1.0	101	90		110	0.7	10	
Sample ID: C11020714-009A	Sa	mple Matrix	Spike			Run. TITR	ATION_	110228A		02/28/	11 12:21
Chlonde		217	mg/L	1.0	100	90		110			
ample ID: C11020714-009A	Sa	mple Matrix	Spike Duplicate			Run [.] TITR	ATION_	110228A		02/28/	/11 12:23
Chloride		219	mg/L	10	101	90		110	0.8	10	
ample ID: LCS35-110228	La	boratory Cor	ntrol Sample			Run: TITR	ATION_	110228A		02/28/	/11 12.25
Chloride		3610	mg/L	1.0	102	90		110			
Sample ID: C11020714-020A	Sa	mple Matrix	Spike			Run: TITR	ATION_	110228A		02/28/	/11 12.50
Chlonde		120	mg/L	1.0	101	90		110			
ample ID: C11020714-020A	Sa	mple Matrix	Spike Duplicate			Run TITR		110228A		02/28/	/11 12:51
Chloride		119	mg/L	1.0	100	90		110	0.7	10	
Sample ID: C11020714-023A	Sa	mple Matrix	Spike			Run TITR		110228A		02/28/	/11 13:00
Chlonde		658	mg/L	1.0	100	90		110			
Sample ID: C11020714-023A	Sa	mple Matrix	Spike Duplicate			Run [.] TITR	ATION_	110228A		02/28/	/11 13:02
Chloride		661	mg/L	1.0	101	90		110	0.5	10	

Prepared by Casper, WY Branch

Client: Denison Mines USA Corp Project: 1st Quarter Chloroform 2011

Report Date: 03/11/11 Work Order: C11020714

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E353.2									Batch	R143199
Sample ID: MBLK-1	Me	ethod Blank				Run: TECH	NICON_110301A		03/01/	11 12.52
Nitrogen, Nitrate+Nitrite as N		ND	mg/L	0.10						
Sample ID: LCS-2	La	boratory Cor	ntrol Sample			Run: TECH	NICON_110301A		03/01/	11 12 [.] 54
Nitrogen, Nitrate+Nitrite as N		2.42	mg/L	0.10	97	90	110			
Sample ID: C11020710-001BMS	Sa	mple Matrix	Spike			Run: TECH	NICON_110301A		03/01/	11 13 47
Nitrogen, Nitrate+Nitrite as N		2.16	mg/L	0.10	108	90	110			
Sample ID: C11020710-001BMSI	D Sa	mple Matrix	Spike Duplicate			Run [.] TECH	NICON_110301A		03/01/	11 13.49
Nitrogen, Nitrate+Nitrite as N		2.09	mg/L	0 10	105	90	110	3.3	10	
Sample ID: C11020714-007BMS	Sa	mple Matrix	Spike			Run [.] TECH	NICON_110301A		03/01/	'11 14 [.] 27
Nitrogen, Nitrate+Nitrite as N		2.10	mg/L	0.10	105	90	110			
Sample ID: C11020714-007BMSI	D Sa	mple Matrix	Spike Duplicate			Run TECH	NICON_110301A		03/01/	11 14.29
Nitrogen, Nitrate+Nitrite as N		2.08	mg/L	0.10	104	90	110	1.0	10	
Sample ID: C11020714-017BMS	Sa	Imple Matrix	Spike			Run. TECH	INICON_110301A		03/01/	′11 15·04
Nitrogen, Nitrate+Nitrite as N		2.05	mg/L	0.10	103	90	110			
Sample ID: C11020714-017BMSi	D Sa	Imple Matrix	Spike Duplicate			Run. TECH	INICON_110301A		03/01/	′11 15 ·07
Nitrogen, Nitrate+Nitrite as N		2.08	mg/L.	0 10	104	90	110	1.5	10	

Qualifiers: RL - Analyte reporting limit

ND - Not detected at the reporting limit

Prepared by Casper, WY Branch

Client: Denison Mines USA Corp

Project: 1st Quarter Chloroform 2011

Report Date: 03/11/11 Work Order: C11020714

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: SW8260B								-	Batch	R14316
Sample ID: 022811_LCS_4	8 La	boratory Co	ntrol Sample			02/28	/11 14:25			
Carbon tetrachloride		12	ug/L	1.0	120	70	130			
Chloroform		12	ug/L	1.0	121	70	130			
Chloromethane		11	ug/L	10	107	70	130			
Methylene chloride		12	ug/L	1.0	120	70	130			
Surr. 1,2-Dichlorobenzene-d4				1.0	101	80	120			
Surr: Dibromofluoromethane				1.0	93	70	130			
Surr: p-Bromofluorobenzene				1.0	115	80	130			
Surr: Toluene-d8				1.0	102	80	120			
Sample ID: 022811_MBLK_6	8 Me	thod Blank				Run: SATU	RNCA_110228A		02/28	/11 15.37
Carbon tetrachloride		ND	ug/L	1.0						
Chloroform		ND	ug/L	1.0						
Chloromethane		ND	ug/L	1.0						
Methylene chloride		ND	ug/L	1.0						
Surr. 1,2-Dichlorobenzene-d4			-	1.0	101	80	120			
Surr: Dibromofluoromethane				10	93	70	130			
Surr p-Bromofluorobenzene				1.0	106	80	120			
Surr: Toluene-d8				1.0	104	80	120			
Sample ID: C11020714-012CMS	8 Sa	mple Matrix	Spike			Run. SATU	RNCA_110228A		02/28	/11 22.12
Carbon tetrachloride		14000	ug/L	1000	136	70	130			S
Chloroform		48000	ug/L	1000	165	70	130			S
Chloromethane		12000	ug/L	1000	116	70	130			
Methylene chloride		13000	ug/L	1000	126	70	130			
Surr: 1,2-Dichlorobenzene-d4			-	1.0	97	80	120			
Surr Dibromofluoromethane				1.0	109	70	130			
Surr: p-Bromofluorobenzene				1.0	110	80	120			
Surr: Toluene-d8				1.0	103	80	120			
- Spike recovery is high This is a ma	atnx related I	bias since the	MS MSD pair b	oth exhibit this s	ame beha	wor yet have a	an acceptable RPD.			
Sample ID: C11020714-012CMS	D 8 Sa	mple Matrix	Spike Duplica	te		Run ⁻ SATU	RNCA_110228A		02/28	/11 22:48
Carbon tetrachloride		13000	ug/L	1000	128	70	130	6.0	20	
Chloroform		45000	ug/L	1000	137	70	130	6.0	20	S
Chloromethane		11000	ug/L	1000	109	70	130	6.4	20	
Methylene chloride		12000	ug/L	1000	116	70	130	7.9	20	
Surr 1,2-Dichlorobenzene-d4				1.0	99	80	120	0.0	10	
Surr: Dibromofluoromethane				1.0	108	70	130	00	10	
Surr [.] p-Bromofluorobenzene				1.0	108	80	120	0.0	10	
Surr Toluene-d8				1.0	102	80	120	0.0	10	

Qualifiers:

RL - Analyte reporting limit.

S - Spike recovery outside of advisory limits.

ND - Not detected at the reporting limit.

Prepared by Casper, WY Branch

Client: Denison Mines USA Corp

Project: 1st Quarter Chloroform 2011

Report Date: 03/11/11 Work Order: C11020714

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: SW8260B						=			Batch.	R143253
Sample ID: 030211_LCS_4	8 Laboratory Control Sample				Run: SATU	RNCA_110302A		03/02	/11 12 26	
Carbon tetrachloride		10	ug/L	1.0	104	70	130			
Chloroform		9.4	ug/L	1.0	94	70	130			
Chloromethane		8.9	ug/L	1.0	89	70	130			
Methylene chionde		10	ug/L	1.0	100	70	130			
Surr: 1,2-Dichlorobenzene-d4				1.0	105	80	120			
Surr: Dibromofluoromethane				1.0	94	70	130			
Surr: p-Bromofluorobenzene				1.0	117	80	130			
Surr: Toluene-d8				1.0	109	80	120			
Sample ID: 030211_MBLK_6	8 Me	thod Blank				Run: SATU	RNCA_110302A		03/02	/11 13:38
Carbon tetrachloride		ND	ug/L	1.0						
Chloroform		ND	ug/L	10						
Chloromethane		ND	ug/L	1.0						
Methylene chloride		ND	ug/L	1.0						
Surr: 1,2-Dichlorobenzene-d4				1.0	100	80	120			
Surr: Dibromofluoromethane				1.0	96	70	130			
Surr: p-Bromofluorobenzene				1.0	103	80	120			
Surr: Toluene-d8				1.0	105	80	120			
Sample ID: C11020714-011CMS	8 Sa	mple Matrix	Spike			Run: SATU	RNCA_110302A		03/02	/11 20 04
Carbon tetrachloride		1300	ug/L	100	130	70	130			
Chloroform		4100	ug/L	100	104	70	130			
Chloromethane		1100	ug/L	100	112	70	130			
Methylene chloride		1200	ug/L	100	116	70	130			
Surr 1,2-Dichlorobenzene-d4				1.0	98	80	120			
Surr Dibromofluoromethane				1.0	111	70	130			
Surr: p-Bromofluorobenzene				1.0	112	80	120			
Surr: Toluene-d8				1.0	106	80	120			
Sample ID: C11020714-011CMS	D 8 Sa	mple Matrix	Spike Duplicate			Run: SATU	RNCA_110302A		03/02	/11 20.40
Carbon tetrachloride		1300	ug/L	100	130	70	130	06	20	
Chloroform		4100	ug/L	100	104	70	130	0.0	20	
Chloromethane		1100	ug/L	100	109	70	130	3.3	20	
Methylene chloride		1100	ug/L	100	110	70	130	53	20	
Surr: 1,2-Dichlorobenzene-d4				1.0	99	80	120	0.0	10	
Surr. Dibromofluoromethane				1.0	106	70	130	0.0	10	
Surr: p-Bromofluorobenzene				1.0	110	80	120	0.0	10	
Surr: Toluene-d8				1.0	107	80	120	0.0	10	

ND - Not detected at the reporting limit.

Workorder Receipt Checklist

Denison Mines USA Corp

ENERGY

Login completed by: Halley Ackerman Date Received: 2/25/2011 Reviewed by: BL2000\kschroeder Received by: em Reviewed Date: 2/25/2011 Carrier name: FedEx Yes 🗹 Shipping container/cooler in good condition? Not Present No 🗍 Custody seals intact on shipping container/cooler? Not Present Yes 📝 No 📋 Custody seals intact on sample bottles? Yes [7] No 🔲 Not Present V Chain of custody present? Yes 🗹 No 🗌 Chain of custody signed when relinquished and received? Yes 🗹 No 🗌 Chain of custody agrees with sample labels? Yes 🔽 No 🗌 Samples in proper container/bottle? Yes 📝 No 📋 Sample containers intact? Yes 🔽 No 🗌 Sufficient sample volume for indicated test? Yes 🗹 No 🔲 All samples received within holding time? Yes 🗹 No 🔲 Container/Temp Blank temperature 2 4°C On Ice Water - VOA vials have zero headspace? No VOA vials submitted Yes 🗹 No 🔲 Water - pH acceptable upon receipt? Not Applicable Yes 🗹 No 🗌

Contact and Corrective Action Comments

None

ENERGY Chain of Cust	•	-	al Request Rec		Page of3					
Company Name:	PLEASE P Project Nam	KINI (Provide a le, PWS, Permit, Etc.	s much information as po	ssible.) Sample Origin	EPA/State Compliance:					
Denison Mines		arter Chlore	form 2011	State: UT	Yes 🗹 No 🗖					
Report Mail Address: Po Box 809	Contact Nar		e/Fax:	Email:	Sampler: (Please Print)					
Blanding ut 84511	Ryan P.	Imer 433 (78 2221		Garrin Palmer					
Invoice Address:		tact & Phone:		Purchase Order:	Quote/Bottle Order:					
Same		Same								
Special Report/Formats:		ANALYSIS F	NI ANDERSTED	Contact ELI prior	to Shipped by: ubmittal J.Ld C.V					
				RUSH sample su for charges and	ubmittal					
		975		K scheduling - See						
DW EDD/EDT(Electronic Data)	N S VS MIS/S Bassa g Wa	a	H H H	Instruction Page	Receipt Temp					
	inkin A C	J	SEE ATTACHED Standard Turnaround (TAT)	U Comments:	2.4 °C					
State: LEVEL IV Other: NELAC	- Drate	+			On Ice: ON					
	Number of Containers Sample Type: A W S V B O DW <u>Air Water Solis/Solids</u> <u>Vegetation Bioassay Other</u> DW - Drinking Water		SEE /	S	Custody Seal					
	Sar	+			On Bottle Y W On Cocier /Y N					
SAMPLE IDENTIFICATION Collection Collection	MATRIX	Br	ŭ.	H	Intact Y N Signature					
(Name, Location, interval, etc.) Date Time			╌┼╌┼╌┼╌╄═╛		Match V N					
TW4-22 2/23/11 0740	5W	X								
2 TW4-6 2123/11 0800	5W	X								
3 TW4-11 2/23/11 0825	5W	X								
TW4-15 2/23/11 1330	50	X			1St					
5 TW4-10 2/23/11 0840	50	X								
TW4-7 2/23/11 0900	SW	X			<u>a</u>					
7	50									
			┤╺╃╴┠╺╂╶┨╶	· • · · · · · · · · · · · · · · · · · ·						
TW4-1 2/24/11 0800	50		╶┼╌┿╌┼╌┿╌	╉┈┠╸╴╼──						
MW-4 2/23/11 1255	5W		╺╋╸╋╺╋╍╄╍╉┈┨┈							
¹⁰ T W H - H Custody Relinquished by (print) Date/Time:	5W Signa	sture.	Received by (print)	Date/Time-	Signature					
Custody Relinquished by (print) Date/Time: Record Relinquished by (print) Date/Time: Relinquished by (print) Date/Time:	Janner	Hollin		Date/Time						
			Received by (print)		Signature					
Signed Sample Disposal: Return to Client:	Lab Dispo		Received by Laboretory: MCP	Date/Time	Signature 1.1 F					

In certain circumstances, samples submitted to Energy Laboratories, inc. may be subcontracted to other certified laboratories in order to complete the analysis requested. This serves as notice of this possibility. All sub-contract data will be clearly notated on your analytical report.

Page 33 of 35

ENERGY	Chain o	of Cust	-			-			-						Pag	ge _2_ of _3
Company Name: Danison N Report Mail Address: Po Box	PLEASE PRINT (Provide as much information as por Project Name, PWS, Permit, Etc. 1ST Quarter Chloroform 2011 Contact Name: Phone/Fax:										ssible Samp State: Email	UT	EPA/State Compliance: Yes 2 No Sampler: (Please Print)			
Blanding WT 84511			Ryan F				67/	82	221			1				rin Palmer
Invoice Address: Same			Invoice Con		Sal								Purch	ase Order:		Bottle Order:
Special Report/Formats:	EDD/EDT(Ek Format: LEVEL IV NELAC	ectronic Data)	Number of Containers Sample Type: A W S V B O DW <u>Air Water Solis/Solids</u> <u>Vegetation Bioassay Other</u> DW - Drinking Water	Quote # 22975 2			B RE	QU		<u>E</u> D	SEE ATTACHED	Standard Turnaround (TAT)	R U S	Contact ELI prio RUSH sample s for charges and scheduling – Se Instruction Page Comments:	ubmittal e	Shipped by: <u>Yoley</u> Codier ID(s): <u>(((y))</u> Receipt Temp <u>Yo</u> C On Ice: On Ice: On Botte On Cooler N
SAMPLE IDENTIFICATION (Name, Location, Interval, etc.)	Collection Date	Collection Time	MATRIX	8 Q								St	Н			Intacl N Signature Y N Match
TW4-2	2/24/11	0815	50	X												2
2 TW4-20	2/23/11	1418	5W	X												
Trip Blank 6082	2/21/11			X) 285
5 6																1 A BIC
8										1						ORAT
9							┼╌╃				-					
10	Dete		Rime.						by (print)	Ţ			Date/Time		Signe	
Custody Record MUST be	iday 2/24 Date/T	<u>/2011 1130</u>	Signal Signal	ature.		5	R	eceived	i by (print)		 	Date/Tim		Signa	alure
Signed	Return to Client:		Lab Dispo	sal:			R	eceive	d by Labe	M	NP/	4		sela 1015	Signa	

In certain circumstances, samples submitted to Energy Laboratories, Inc. may be subcontracted to other certified laboratories in order to complete the analysis requested. This serves as notice of this possibility. All sub-contract data will be clearly notated on your analytical report.

	Chain c	of Cust											Pa	ge_ <u>3_of_3_</u>
Company Name:	PLEASE PRINT (Provide as much information as possible.) Project Name, PWS, Permit, Etc. Sample Origin											_		
Denison Mines			1st Quarter Chloroform 2011									-	EPA/State Compliance:	
Report Mail Address: PO Box &				ne:			e/Fax:				State Emai			I No I
	८० व							201	~ •					
Blanding UT 84511			Ryan				6/8	~~~~	<u> </u>					in Palmer
Invoice Address:			Invoice Con								Purc	hase Order:	Quote	Bottle Order:
Same					me					_				
Special Report/Formats:			Š.	AR		sis r	equ	ESTE	D			Contact ELI prior RUSH sample su	to bmittal	Shipped by:
			KO SE	2						E	R	for charges and		Cooler iD(s):
		etropic Deta)	visit S visit Vate	175						μĘ		scheduling - See Instruction Page		Clunt
	Format:		Number of Containers Sample Type: A W S V B O DW <u>Air Water Soils/Solids</u> <u>Vegetation Bioassay Other</u> DW - Drinking Water	29						Standard Turnaround (TAT)	U	Comments:		Receipt Temp
State:	LEVEL IV NELAC		Drin E	U		1				uarc				_ <u>J.4_</u> °c
□ Other: □	NELAC			#						< P	S			On Ica: ØN
				3						ndard	5			Custody Seal On Bottle Y
			<i>м</i>	1 0						Stan	н			On Cooler N
SAMPLE IDENTIFICATION (Name, Location, Interval, etc.)	Collection Date	Collection Time	MATRIX	っの						Ű				Signature N Match
	2/21/11	0759	5W	X										
2 TW4-222	2/22/11	0944	SW	X										
3 TW4-1R	2/23/11	0950	SW	X										0
1 TW4-60	2/23/11		56	X										S.
5 TW 4-70	2/23/11	0840	5W	X										
1 TW4-16	2/22/11		50	X			+			1				OR
7	2/22/11	0800	50	X					┼╌┼╸	+	1			
<u>TW4-26</u>				\Diamond		+ +	┽┼		┼╌┦╴			<u> </u>		
<u>TW4-5</u>	2/22/11	0817	Sw				+		+					<u>Ø</u>
TW4-18		0840	56	X		+			╀╌╌╂╴					Ø
¹⁰ TW4-21 Custody Reinguished by (print)	2/22/11 Date/Tir	0855	<u>5</u> Signa	X			Banar	by (print)				IMP BLOAKS		
Ouslouy - Hallin			Damor	Hall	in								Signafi	urð'
Record Relinguished by (print) MUST be	Date/Tir	ne.	Signi	iture.	\mathcal{F}			by (pnnt)			Date/Time		Signati	ung .
Olanod	Dotum to Ollanti						Receive	by Labor	a pry	NP.	Date/Ting	125/1 10:15-	Signati	ure
Signed Sample Disposal:	Return to Client:		Lab Dispo	seli:				\sim		<u> 10 70</u>	1	(~) // //·/›-	_	

In certain circumstances, samples submitted to Energy Laboratories, Inc. may be subcontracted to other certified laboratories in order to complete the analysis requested. This serves as notice of this possibility. All sub-contract data will be clearly notated on your analytical report. Visit our web site at <u>www energylab.com</u> for additional information, downloadable fee schedule, forms, and links.

Page 35 of 35

Tab I

Quality Assurance and Data Validation Tables

I-1: Field	
QA/QC	
Evaluation	

I W4-1, I W4-2, I W RPD > than 10%	MW-4, TW4-4, TW4-15, TW4-19, and TW4-20 are continually pumped wells.	TW4-26	TW4-25	TW4-24	TW4-23	TW4-22	TW4-21	TW4-20	TW4-19	TW4-18	TW4-17	TW4-16	TW4-15		TW4-14	TW4-13	TW4-12	TW4-11	TW4-10	TW4-9	TW4-8	TW4-7	TW4-6	TW4-5	TW4-4	TW4-3	TW4-2	TW4-1	MW-4	Location
v4-3, 1W4-6, 1W	W4-15, TW4-19,	28.26	115.22	37.14	62.94	77.36	81.54	NA	NA	104.86	73.76	101.06	NA		6.50	72.90	81.22	53.86	73.64	85.60	76.58	69.58	28.98	82.78	NA	119.56	69.48	60.64	NA	2x Casing Volume
1 W4-1,1 W4-2,1 W4-3, 1 W4-6, 1 W4-7, 1 W4-10, 1 W4-11, 1 W4-13, 1 W4-14, 1 W4-16,1 W4-22, and 1 W4-26 RPD > than 10%	and TW4-20 are c	17.68	325.21	226.10	190.74	43.01	240.55	Continuously pumped well	Continuously pumped well	261.12	78.12	92.14	pumped well	Continuously	2.55	39.44	240.38	58.82	40.80	257.21	256.87	60.01	35.02	241.74	Continuously pumped well	77.01	40.80	59.16	Continuously pumped well	Volume Pumped
v4-11, 1W4-13,	ontinually pump	28	115	37	63	77	82			105	74	101			L	73	81	54	74	86	77	70	29	83		120	69	61		2x Casing Volume
1W4-14, 1W4	ed wells.	18	325	226	191	43	241	1 	+	261	78	92	-		3	39	240	59	41	257	257	60	35	242	1	77	41	59	-	Volume Pumped
-16,1W4-22, and	1/ 11/ 10/ 1	Pumped Dry	OK	OK	OK	Pumped Dry	OK			OK	OK	Pumped Dry			Pumped Dry	Pumped Dry	OK	OK	Pumped Dry	OK	OK	Pumped Dry	OK	OK		Pumped Dry	Pumped Dry	Pumped Dry		Volume Check
IW4-26 wet		3132	2959	9041	3597	4047	3270	3697	3135	1341	4057	3660	3379		2997	1324	901	1619	2194	2423	3213	1982	3649	1389	2311	1555	2342	2013	1798	Conductivity
re pumped di	-	32	2962	9043	3597	47	3270	97	35	1331	4057	3550	79		97	24	668	1528	94	2424	3218	1381	3482	1381	11	1530	2292	1819	86	ctivity
ry and sampl	-	N/A	0.10	0.02	0.00	N/A	0.00	N/A	N/A	0.75	0.00	3.05	N/A		N/A	N/A	0.22	5.78	N/A	0.04	0.16	35.74	4.68	0.58	N/A	1.62	2.16	10.13	N/A	RPD
were pumped dry and sampled after recovery.		4.85				6.79	6.95 6	5.87	6.71		6.17 6		6.71		7.99	7.08		6.96 (6.32		6.98 6			6.61	6.65	6.89 (6.33 (6.91	PН
ry.		N/A		6.66 0.15	6.55 0.00	N	6.47 7.	N/A	N	6.44 0.16	6.17 0.	6.63 0.	N		N	N	7.14 0.14	6.88 1.	N	6.64 0.			6.64 5.	6.6 0.	N	6.87 0.			N	R
		'A	14 14.52	15 14.84	00 13.49	N/A	7.15 15.26	'A	N/A	16 14.85	0.00 14.11	0.76 12.18	N/A		N/A	N/A		1.16 13.94	N/A	0.30 14.49	0.14 14.29	1.00 14.16	5.56 13.6	0.15 14.38	N/A	0.29 13.87		0.16 13.61	N/A	RPD
		9.81	52 14.49	34 14.87	19 13.45	14.3	26 15.21	15.3	15.24	85 14.83	11 14.1	18 12.85	14.84		14.97	14.56	56 14.57	94 13.95	14.47	49 14.45	29 14.2	16 14.21	.6 13.79	38 14.36	16.03	87 13.84	51 13.97	61 13	15.41	Temp
		N/A		0.20	0.30	N/A	0.33	N/A	N/A	0.13	0.07	5.35	N/A		N/A			0.07	N/A					0.14	N/A	0.22		4.58	N/A	RPD
		5	210	259	239	4	299			304	104	385					230	329		244	171	269	385	350		397	358	405		Redox
		537	209	257	238	416	297	314	235	307	103	350	292	and Tabletin	150	257	229	337	380	241	171	276	378	348	251	412	354	404	388	Redox Potential
		N/A	0.48	0.78	0.42	N/A	0.67	N/A	N/A	0.98	0.97	9.52	N/A		N/A	N/A	0.44	2.40	N/A	1.24	0.00	2.57	1.83	0.57	N/A	3.71	1.12	0.25	N/A	RPD
		24.9	2766	108	1215	6.3	9	0.00	149.4	12.9	5.7	143.2	0.00		785		1264	14.8	43.8	363	156.1	54.5	224	29.1	15.6	7.9	50.3	136.7	0.0	Turbidity
		9	2899	101.4	1240	3	8.9	0	.4	12.4	5.7	90.5	0		S		1154	32.2	8	349	151.5	43.3	352	29.1	6	2.1	48	240.9		dity
		N/A	4.70	6.30	2.04	N/A	1.12	N/A	N/A	3.95	0.00	45.10	N/A		N/A	N/A	9.10	74.04	N/A	3.93	2.99	22.90	44.44	0.00	N/A	116.00	4.68	55.19	N/A	RPD

The QAP states that turbidity should be less than 5 Nephelometric Turbidity Units ("NTU") prior to sampling unless the well is characterized by water that has a higher turbidity. The QAP does not require that turbidity measurements be less than 5 NTU prior to sampling. As such, the noted observations regarding turbidity measurements less than 5 NTU are included for information purposes only.

Location	Constituent	Holding Time	Allowed Holding Time	Holding Time Check
	Chloroform	7.00 days	14 days	OK
	Chloromethane	6.00 days	14 days	OK
MW-4	Methylene chloride	6.00 days	14 days	OK
MW-4	Carbon Tetrachloride	6.00 days	14 days	OK
	Nitrogen	6.00 days	28 days	OK
MW-4	Chloride	5.00 days	28 days	OK
TW4-1	Chloroform	6.00 days	14 days	OK
TW4-1	Chloromethane	5.00 days	14 days	OK
TW4-1	Methylene chloride	5.00 days	14 days	OK
TW4-1	Carbon Tetrachloride	5.00 days	14 days	OK
	Nitrogen	5.00 days	28 days	OK
TW4-1	Chloride	4.00 days	28 days	OK
TW4-2	Chloroform	6.00 days	14 days	OK
TW4-2	Chloromethane	5.00 days	14 days	OK
TW4-2	Methylene chloride	5.00 days	14 days	OK
TW4-2	Carbon Tetrachloride	5.00 days	14 days	OK
TW4-2	Nitrogen	5.00 days	28 days	OK
TW4-2	Chloride	4.00 days	28 days	OK
TW4-3	Chloroform	10.00 days	14 days	OK
TW4-3	Chloromethane	10.00 days	14 days	OK
TW4-3	Methylene chloride	10.00 days	14 days	OK
TW4-3	Carbon Tetrachloride	10.00 days	14 days	OK
TW4-3	Nitrogen	7.00 days	28 days	OK
TW4-3	Chloride	9.00 days	28 days	OK
TW4-4	Chloroform	7.00 days	14 days	OK
TW4-4	Chloromethane	6.00 days	14 days	OK
TW4-4	Methylene chloride	6.00 days	14 days	OK
TW4-4	Carbon Tetrachloride	6.00 days	14 days	OK
	Nitrogen	6.00 days	28 days	OK
TW4-4	Chloride	5.00 days	28 days	OK
TW4-5	Chloroform	9.00 days	14 days	OK
TW4-5	Chloromethane	9.00 days	14 days	OK
TW4-5	Methylene chloride	9.00 days	14 days	OK
TW4-5	Carbon Tetrachloride	9.00 days	14 days	OK
TW4-5	Nitrogen	7.00 days	28 days	OK
TW4-5	Chloride	6.00 days	28 days	OK
TW4-6	Chloroform	7.00 days	14 days	OK
TW4-6	Chloromethane	6.00 days	14 days	OK
TW4-6	Methylene chloride	6.00 days	14 days	OK
TW4-6	Carbon Tetrachloride	6.00 days	14 days	OK
TW4-6	Nitrogen	6.00 days	28 days	OK
TW4-6	Chloride	5.00 days	28 days	OK
TW4-7	Chloroform	5.00 days	14 days	OK
TW4-7	Chloromethane	6.00 days	14 days	ОК
TW4-7	Methylene chloride	6.00 days	14 days	OK
TW4-7	Carbon Tetrachloride	6.00 days	14 days	OK
TW4-7	Nitrogen	6.00 days	28 days	OK

				Holding Time
Location	Constituent	Holding Time	Allowed Holding Time	
TW4-7	Chloride	5.00 days	28 days	OK
TW4-8	Chloroform	9.00 days	14 days	OK
TW4-8	Chloromethane	9.00 days	14 days	OK
TW4-8	Methylene chloride	9.00 days	14 days	OK
TW4-8	Carbon Tetrachloride	9.00 days	14 days	OK
TW4-8	Nitrogen	6.00 days	28 days	OK
TW4-8	Chloride	8.00 days	28 days	OK
TW4-9	Chloroform	8.00 days	14 days	OK
TW4-9	Chloromethane	8.00 days	14 days	OK
TW4-9	Methylene chloride	8.00 days	14 days	OK
TW4-9	Carbon Tetrachloride	8.00 days	14 days	OK
TW4-9	Nitrogen	5.00 days	28 days	OK
TW4-9	Chloride	7.00 days	28 days	OK
TW4-10	Chloroform	7.00 days	14 days	OK
TW4-10	Chloromethane	6.00 days	14 days	OK
TW4-10	Methylene chloride	6.00 days	14 days	OK
TW4-10	Carbon Tetrachloride	6.00 days	14 days	OK
TW4-10	Nitrogen	6.00 days	28 days	ОК
TW4-10	Chloride	5.00 days	28 days	OK
TW4-11	Chloroform	5.00 days	14 days	OK
TW4-11	Chloromethane	6.00 days	14 days	OK
TW4-11	Methylene chloride	6.00 days	14 days	OK
TW4-11	Carbon Tetrachloride	6.00 days	14 days	OK
TW4-11	Nitrogen	6.00 days	28 days	OK
TW4-11	Chloride	5.00 days	28 days	OK
TW4-12	Chloroform	10.00 days	14 days	OK
TW4-12	Chloromethane	10.00 days	14 days	OK
TW4-12	Methylene chloride	10.00 days	14 days	OK
TW4-12	Carbon Tetrachloride	10.00 days	14 days	OK
TW4-12	Nitrogen	7.00 days	28 days	OK
TW4-12	Chloride	9.00 days	28 days	OK
TW4-13	Chloroform	10.00 days	14 days	OK
TW4-13	Chloromethane	10.00 days	14 days	OK
TW4-13	Methylene chloride	10.00 days	14 days	OK
TW4-13	Carbon Tetrachloride	10.00 days	14 days	OK
TW4-13	Nitrogen	7.00 days	28 days	OK
TW4-13	Chloride	9.00 days	28 days	OK
TW4-14	Chloroform	10.00 days	14 days	OK
TW4-14	Chloromethane	10.00 days	14 days	OK
TW4-14	Methylene chloride	10.00 days	14 days	OK
TW4-14	Carbon Tetrachloride	10.00 days	14 days	OK
TW4-14	Nitrogen	7.00 days	28 days	OK
TW4-14	Chloride	9.00 days	28 days	OK
TW4-15	Chloroform	7.00 days	14 days	OK
TW4-15	Chloromethane	5.00 days	14 days	OK
TW4-15	Methylene chloride	5.00 days	14 days	OK
TW4-15	Carbon Tetrachloride	5.00 days	14 days	OK
TW4-15	Nitrogen	6.00 days	28 days	OK

Location	Constituent	Holding Time	Allowed Holding Time	Holding Time Check
	Chloride	5.00 days	28 days	OK
TW4-16	Chloroform	9.00 days	14 days	OK
TW4-16	Chloromethane	9.00 days	14 days	OK
TW4-16	Methylene chloride	9.00 days	14 days	OK
	Carbon Tetrachloride	9.00 days	14 days	OK OK
TW4-16	Nitrogen	7.00 days	28 days	OK OK
TW4-16	Chloride	6.00 days	28 days	OK OK
TW4-18 TW4-17	Chloroform	5.00 days	14 days	OK
TW4-17	Chloromethane	5.00 days	14 days	OK
TW4-17	Methylene chloride	5.00 days	14 days	OK
TW4-17 TW4-17	Carbon Tetrachloride	5.00 days	14 days	OK
TW4-17 TW4-17			28 days	OK OK
	Nitrogen	6.00 days		OK OK
TW4-17	Chloride	5.00 days	28 days	OK OK
TW4-18	Chloroform Chloromethane	9.00 days	14 days	OK OK
TW4-18		9.00 days	14 days 14 days	OK OK
	Methylene chloride	9.00 days		OK
TW4-18	Carbon Tetrachloride	9.00 days	14 days	
TW4-18	Nitrogen	7.00 days	28 days	OK
TW4-18	Chloride	6.00 days	28 days	OK
	Chloroform	11.00 days	14 days	OK
TW4-19	Chloromethane	9.00 days	14 days	OK
TW4-19	Methylene chloride	9.00 days	14 days	OK
TW4-19	Carbon Tetrachloride	9.00 days	14 days	OK
	Nitrogen	5.00 days	28 days	OK
TW4-19	Chloride	7.00 days	28 days	OK
TW4-20	Chloroform	5.00 days	14 days	OK
TW4-20	Chloromethane	6.00 days	14 days	OK
TW4-20	Methylene chloride	6.00 days	14 days	OK
TW4-20	Carbon Tetrachloride	6.00 days	14 days	OK
TW4-20	Nitrogen	6.00 days	28 days	OK
TW4-20	Chloride	5.00 days	28 days	OK
TW4-21	Chloroform	9.00 days	14 days	OK
TW4-21	Chloromethane	9.00 days	14 days	OK
TW4-21	Methylene chloride	9.00 days	14 days	OK
TW4-21	Carbon Tetrachloride	9.00 days	14 days	OK
TW4-21	Nitrogen	7.00 days	28 days	OK
TW4-21	Chloride	6.00 days	28 days	OK
TW4-22	Chloroform	5.00 days	14 days	OK
TW4-22	Chloromethane	6.00 days	14 days	OK
TW4-22	Methylene chloride	6.00 days	14 days	OK
TW4-22	Carbon Tetrachloride	6.00 days	14 days	OK
TW4-22	Nitrogen	6.00 days	28 days	OK
TW4-22	Chloride	5.00 days	28 days	OK
TW4-23	Chloroform	9.00 days	14 days	OK
TW4-23	Chloromethane	9.00 days	14 days	OK
TW4-23	Methylene chloride	9.00 days	14 days	OK
TW4-23	Carbon Tetrachloride	9.00 days	14 days	OK
TW4-23	Nitrogen	6.00 days	28 days	OK

<u> </u>				
				Holding Time
Location	Constituent	Holding Time	Allowed Holding Time	Check
TW4-23	Chloride	8.00 days	28 days	OK
TW4-24	Chloroform	8.00 days	14 days	OK
TW4-24	Chloromethane	8.00 days	14 days	OK
TW4-24	Methylene chloride	8.00 days	14 days	OK
TW4-24	Carbon Tetrachloride	8.00 days	14 days	OK
TW4-24	Nitrogen	5.00 days	28 days	OK
TW4-24	Chloride	7.00 days	28 days	OK
TW4-25	Chloroform	9.00 days	14 days	OK
TW4-25	Chloromethane	9.00 days	14 days	OK
TW4-25	Methylene chloride	9.00 days	14 days	OK
TW4-25	Carbon Tetrachloride	9.00 days	14 days	OK
TW4-25	Nitrogen	6.00 days	28 days	OK
TW4-25	Chloride	8.00 days	28 days	OK
TW4-26	Chloroform	9.00 days	14 days	OK
TW4-26	Chloromethane	9.00 days	14 days	OK
TW4-26	Methylene chloride	9.00 days	14 days	OK
TW4-26	Carbon Tetrachloride	9.00 days	14 days	OK
TW4-26	Nitrogen	7.00 days	28 days	OK
TW4-26	Chloride	6.00 days	28 days	OK
TW4-60	Chloroform	8.00 days	14 days	OK
TW4-60	Chloromethane	8.00 days	14 days	OK
TW4-60	Methylene chloride	8.00 days	14 days	OK
TW4-60	Carbon Tetrachloride	8.00 days	14 days	OK
TW4-60	Nitrogen	6.00 days	28 days	OK
TW4-60	Chloride	5.00 days	28 days	OK
TW4-65	Chloroform	8.00 days	14 days	OK
TW4-65	Chloromethane	9.00 days	14 days	OK
TW4-65	Methylene chloride	9.00 days	14 days	OK
TW4-65	Carbon Tetrachloride	9.00 days	14 days	OK
TW4-65	Nitrogen	5.00 days	28 days	OK
TW4-65	Chloride	7.00 days	28 days	OK
TW4-70	Chloroform	8.00 days	14 days	OK
TW4-70	Chloromethane	8.00 days	14 days	OK
TW4-70	Methylene chloride	8.00 days	14 days	OK
TW4-70	Carbon Tetrachloride	8.00 days	14 days	OK
TW4-70	Nitrogen	6.00 days	28 days	OK
TW4-70	Chloride	5.00 days	28 days	OK

Table I-3 Recipt Temperature Check

Sample Batch	Wells in Batch	Temperature
C11020540	TW4-3, TW4-3R, TW4-8, TW4-9,TW4-9R, TW4-12, TW4-13, TW4-14,TW4-19, TW4-23, TW4-23R,TW4-24, TW4-25, TW4-65, Trip Blank	3 °C
C11020714	MW-4,TW4-1,TW4-1R,TW4-2,TW4-4,TW4-5,TW4- 6,TW4-7,TW4-10,TW4-11,TW4-15,TW4-16,TW4- 16R,TW4-17,TW4-18,TW4-20,TW4-21,TW4-22,TW4- 22R,TW4-26,TW4-60,TW4-70,Trip Blank	2.4 °C

I-4 Analytical Method Check

Parameter	Method	Method Used by Lab
Carbon Tetrachloride	SW8260B	SW8260B
Chloride	A4500-Cl B	A4500-C1 B
Chloroform	SW8260B	SW8260B
Chloromethane	SW8260B	SW8260B
Methylene chloride	SW8260B	SW8260B
Nitrogen	E353.2	E353.2

All parameters were analyzed using the reporting method specificied in the QAP

Location	Constituent	Lab Reporting Limit	Rqd' Reporting Limit	Qualifier	Qualifier Check
MW-4	Chloroform	100 ug/L	1.0 ug/L	D	OK
MW-4	Chloromethane	1 ug/L	1.0 ug/L	U	OK
MW-4	Methylene chloride	l ug/L	1.0 ug/L	U	OK
MW-4	Carbon Tetrachloride	1 ug/L	1.0 ug/L		OK
MW-4	Nitrogen	0.5 mg/L	0.1 mg/L	D	OK
MW-4	Chloride	1 mg/L	1 mg/L		OK
TW4-1	Chloroform	100 ug/L	1.0 ug/L	D	OK
TW4-1	Chloromethane	1 ug/L	1.0 ug/L	U	OK
TW4-1	Methylene chloride	1 ug/L	1.0 ug/L	U	OK
TW4-1	Carbon Tetrachloride	1 ug/L	1.0 ug/L	U	OK
TW4-1	Nitrogen	0.5 mg/L	0.1 mg/L	D	OK
TW4-1	Chloride	1 mg/L	1 mg/L		ŌK
TW4-2	Chloromethane	1 ug/L	1.0 ug/L	U	OK
TW4-2	Methylene chloride	1 ug/L	1.0 ug/L	U	OK
TW4-2	Carbon Tetrachloride	1 ug/L	1.0 ug/L		OK
TW4-2	Nitrogen	1 mg/L	0.1 mg/L	D	OK
TW4-2	Chloride	1 mg/L	1 mg/L		OK
TW4-3	Chloroform	1 ug/L	1.0 ug/L	U	OK
TW4-3	Chloromethane	l ug/L	1.0 ug/L	U	OK
TW4-3	Methylene chloride	l ug/L	1.0 ug/L	U	OK
TW4-3	Carbon Tetrachloride	1 ug/L	1.0 ug/L	U	OK
TW4-3	Nitrogen	0.2 mg/L	0.1 mg/L	D	OK
TW4-3	Chloride	1 mg/L	1 mg/L		OK
TW4-4	Chloroform	100 ug/L	1.0 ug/L	D	OK
TW4-4	Chloromethane	1 ug/L	1.0 ug/L	U	OK
TW4-4	Methylene chloride	1 ug/L	1.0 ug/L	U	OK
TW4-4	Carbon Tetrachloride	1 ug/L	1.0 ug/L		OK
TW4-4	Nitrogen	1 mg/L	0.1 mg/L	D	OK
TW4-4	Chloride	1 mg/L	1 mg/L		OK
TW4-5	Chloroform	1 ug/L	1.0 ug/L		OK
TW4-5	Chloromethane	l ug/L	1.0 ug/L	U	OK
TW4-5	Methylene chloride	1 ug/L	1.0 ug/L	U	OK
TW4-5	Carbon Tetrachloride	1 ug/L	1.0 ug/L	U	OK
TW4-5	Nitrogen	l mg/L	0.1 mg/L	D	OK
TW4-5	Chloride	1 mg/L	l mg/L		OK
TW4-6	Chloroform	10 ug/L	1.0 ug/L	D	OK
TW4-6	Chloromethane	1 ug/L	1.0 ug/L	U	OK
TW4-6	Methylene chloride	1 ug/L	1.0 ug/L	U	OK
TW4-6	Carbon Tetrachloride	1 ug/L	1.0 ug/L	U	OK
TW4-6	Nitrogen	0.1 mg/L	0.1 mg/L		OK
TW4-6	Chloride	1 mg/L	1 mg/L	I	ОК
TW4-7	Chloroform	100 ug/L	1.0 ug/L	D	ОК
TW4-7	Chloromethane	1 ug/L	1.0 ug/L	U	OK
TW4-7	Methylene chloride	1 ug/L	1.0 ug/L	U	ОК
TW4-7	Carbon Tetrachloride	1 ug/L	1.0 ug/L	U	ОК
TW4-7	Nitrogen	0.2 mg/L	0.1 mg/L	D	ОК
TW4-7	Chloride	1 mg/L	l mg/L		OK

.

Location	Constituent	Lab Reporting Limit	Rqd' Reporting Limit	Qualifier	Qualifier Check
TW4-8	Chloroform	1 ug/L	1.0 ug/L	U	OK
TW4-8	Chloromethane	1 ug/L	1.0 ug/L	U	OK
TW4-8	Methylene chloride	1 ug/L	1.0 ug/L	U	OK
TW4-8	Carbon Tetrachloride	1 ug/L	1.0 ug/L	U	OK
TW4-8	Nitrogen	0.1 mg/L	0.1 mg/L	U	OK
TW4-8	Chloride	1 mg/L	1 mg/L		OK
TW4-9	Chloromethane	1 ug/L	1.0 ug/L	U	ОК
TW4-9	Methylene chloride	1 ug/L	1.0 ug/L	U	ОК
TW4-9	Carbon Tetrachloride	1 ug/L	1.0 ug/L	U	OK
TW4-9	Nitrogen	0.1 mg/L	0.1 mg/L		OK
TW4-9	Chloride	1 mg/L	1 mg/L		ОК
TW4-10	Chloroform	100 ug/L	1.0 ug/L	D	ок
TW4-10	Chloromethane	1 ug/L	1.0 ug/L	 U	OK
TW4-10	Methylene chloride	1 ug/L	1.0 ug/L	U	OK.
TW4-10	Carbon Tetrachloride	1 ug/L	1.0 ug/L	U	ОК
TW4-10	Nitrogen	1 mg/L	0.1 mg/L	D	ОК
TW4-10	Chloride	1 mg/L	1 mg/L		ОК
TW4-10 TW4-11	Chloroform	100 ug/L	1.0 ug/L	D	OK
TW4-11	Chloromethane	1 ug/L	1.0 ug/L 1.0 ug/L	U	OK
	Methylene chloride		1.0 ug/L 1.0 ug/L	U	OK
TW4-11	Carbon Tetrachloride	1 ug/L	1.0 ug/L 1.0 ug/L	U	OK
TW4-11 TW4-11	· · · · · · · · · · · · · · · · · · ·	1 ug/L	0.1 mg/L	D	OK
TW4-11 TW4-11	Nitrogen	0.5 mg/L		<u>↓ </u>	OK
TW4-11 TW4-12	Chloride	1 mg/L	1 mg/L	U	OK
	Chloroform	1 ug/L	1.0 ug/L	U U	OK
TW4-12	Chloromethane	1 ug/L	1.0 ug/L	U U	OK
TW4-12	Methylene chloride	1 ug/L	1.0 ug/L	<u> </u>	OK
TW4-12	Carbon Tetrachloride	1 ug/L	1.0 ug/L	D	OK OK
TW4-12	Nitrogen	0.5 mg/L	0.1 mg/L		OK OK
TW4-12	Chloride	1 mg/L	<u>1 mg/L</u>		
TW4-13	Chloroform	1 ug/L	1.0 ug/L	U	OK
TW4-13	Chloromethane	1 ug/L	1.0 ug/L		OK
TW4-13	Methylene chloride	1 ug/L	1.0 ug/L	U	OK
TW4-13	Carbon Tetrachloride	1 ug/L	1.0 ug/L	U	OK
TW4-13	Nitrogen	0.5 mg/L	0.1 mg/L	D	OK
TW4-13	Chloride	1 mg/L	<u>1 mg/L</u>		OK
TW4-14	Chloroform	1 ug/L	1.0 ug/L	U	OK
TW4-14	Chloromethane	1 ug/L	1.0 ug/L	<u> </u>	OK
TW4-14	Methylene chloride	1 ug/L	1.0 ug/L	U	OK
TW4-14	Carbon Tetrachloride	1 ug/L	1.0 ug/L		OK
TW4-14	Nitrogen	0.2 mg/L	0.1 mg/L	D	OK
TW4-14	Chloride	1 mg/L	<u>1 mg/L</u>	<u> </u>	OK
TW4-15	Chloroform	100 ug/L	1.0 ug/L	D	OK
TW4-15	Chloromethane	1 ug/L	1.0 ug/L	<u> </u>	OK
TW4-15	Methylene chloride	1 ug/L	1.0 ug/L	<u> </u>	OK
TW4-15	Carbon Tetrachloride	1 ug/L	1.0 ug/L	U	ОК
TW4-15	Nitrogen	0.1 mg/L	0.1 mg/L	Į	ОК
TW4-15	Chloride	1 mg/L	l mg/L	ļ	ОК
TW4-16	Chloroform	1 ug/L	1.0 ug/L		OK

,

Location	Constituent	Lab Reporting Limit	Rqd' Reporting Limit	Qualifier	Qualifier Check
TW4-16	Chloromethane	1 ug/L	1.0 ug/L	U	ОК
TW4-16	Methylene chloride	1 ug/L	1.0 ug/L	U	OK
TW4-16	Carbon Tetrachloride	1 ug/L	1.0 ug/L	U	OK
TW4-16	Nitrogen	1 mg/L	0.1 mg/L	D	ОК
TW4-16	Chloride	1 mg/L	1 mg/L		OK
TW4-17	Chloroform	l ug/L	1.0 ug/L	U	OK
TW4-17	Chloromethane	l ug/L	1.0 ug/L	U	ОК
TW4-17	Methylene chloride	1 ug/L	1.0 ug/L	U	OK
TW4-17	Carbon Tetrachloride	1 ug/L	1.0 ug/L	U	ОК
TW4-17	Nitrogen	0.1 mg/L	0.1 mg/L	U	OK
TW4-17	Chloride	1 mg/L	1 mg/L		OK
TW4-18	Chloroform	1 ug/L	1.0 ug/L		ОК
TW4-18	Chloromethane	1 ug/L	1.0 ug/L	U	OK
TW4-18	Methylene chloride	1 ug/L	1.0 ug/L	U	OK
TW4-18	Carbon Tetrachloride	l ug/L	1.0 ug/L	U	ОК
TW4-18	Nitrogen	1 mg/L	0.1 mg/L	D	OK
TW4-18	Chloride	1 mg/L	1 mg/L		OK
TW4-19	Chloroform	100 ug/L	1.0 ug/L	D	ок
TW4-19	Chloromethane	1 ug/L	1.0 ug/L	U	OK
TW4-19	Methylene chloride	1 ug/L	1.0 ug/L	U	ок
TW4-19	Carbon Tetrachloride	1 ug/L	1.0 ug/L		ок
TW4-19	Nitrogen	2 mg/L	0.1 mg/L	D	OK
TW4-19	Chloride	1 mg/L	1 mg/L		OK
TW4-20	Chloroform	1000 ug/L	1.0 ug/L	D	OK
TW4-20	Chloromethane	1 ug/L	1.0 ug/L	U	OK
TW4-20	Methylene chloride	1 ug/L	1.0 ug/L	1	ОК
TW4-20	Carbon Tetrachloride	1 ug/L	1.0 ug/L		OK
TW4-20	Nitrogen	0.2 mg/L	0.1 mg/L	D	OK
TW4-20	Chloride	1 mg/L	1 mg/L		OK
TW4-21	Chloroform	10 ug/L	1.0 ug/L	D	OK
TW4-21	Chloromethane	1 ug/L	1.0 ug/L	U	ОК
TW4-21	Methylene chloride	1 ug/L	1.0 ug/L	U	OK
TW4-21	Carbon Tetrachloride	1 ug/L	1.0 ug/L		OK
TW4-21	Nitrogen	1 mg/L	0.1 mg/L	D	ОК
TW4-21	Chloride	1 mg/L	1 mg/L		ОК
TW4-22	Chloroform	100 ug/L	1.0 ug/L	D	OK
TW4-22	Chloromethane	1 ug/L	1.0 ug/L	Ū	ОК
TW4-22	Methylene chloride	1 ug/L	1.0 ug/L	U	OK
TW4-22	Carbon Tetrachloride	1 ug/L	1.0 ug/L	Ū	ОК
TW4-22	Nitrogen	1 mg/L	0.1 mg/L	D	OK
TW4-22	Chloride	1 mg/L	1 mg/L		OK
TW4-22 TW4-23	Chloroform	1 ug/L	1.0 ug/L	U	OK
TW4-23	Chloromethane	1 ug/L	1.0 ug/L 1.0 ug/L	U	OK
TW4-23	Methylene chloride	1 ug/L	1.0 ug/L	U	OK
TW4-23	Carbon Tetrachloride	1 ug/L	1.0 ug/L 1.0 ug/L	U	OK
TW4-23	Nitrogen	0.1 mg/L	0.1 mg/L	U	OK
TW4-23	Chloride	1 mg/L	1 mg/L	├ ──	OK
TW4-23 TW4-24	Chloroform	1 ug/L	1.0 ug/L	<u> </u>	OK

Location	Constituent	Lab Reporting Limit	Rqd' Reporting Limit	Qualifier	Qualifier Check
TW4-24	Chloromethane	1 ug/L	1.0 ug/L	U	OK
TW4-24	Methylene chloride	1 ug/L	1.0 ug/L	U	OK
TW4-24	Carbon Tetrachloride	1 ug/L	1.0 ug/L	U	OK
TW4-24	Nitrogen	2 mg/L	0.1 mg/L	D	OK
TW4-24	Chloride	1 mg/L	1 mg/L		OK
TW4-25	Chloroform	1 ug/L	1.0 ug/L	U	OK
TW4-25	Chloromethane	1 ug/L	1.0 ug/L	U	OK
TW4-25	Methylene chloride	1 ug/L	1.0 ug/L	U	OK
TW4-25	Carbon Tetrachloride	1 ug/L	1.0 ug/L	U	OK
TW4-25	Nitrogen	1 mg/L	0.1 mg/L	D	OK
TW4-25	Chloride	1 mg/L	1 mg/L		OK
TW4-26	Chloroform	1 ug/L	1.0 ug/L		OK
TW4-26	Chloromethane	1 ug/L	1.0 ug/L	Ū	OK
TW4-26	Methylene chloride	1 ug/L	1.0 ug/L	U	OK
TW4-26	Carbon Tetrachloride	1 ug/L	1.0 ug/L	U	OK
TW4-26	Nitrogen	1 mg/L	0.1 mg/L	D	OK
TW4-26	Chloride	1 mg/L	1 mg/L		OK
TW4-60	Chloroform	1 ug/L	1.0 ug/L	U	OK
TW4-60	Chloromethane	1 ug/L	1.0 ug/L	U	OK
TW4-60	Methylene chloride	1 ug/L	1.0 ug/L	U	OK
TW4-60	Carbon Tetrachloride	1 ug/L	1.0 ug/L	U	OK
TW4-60	Nitrogen	0.1 mg/L	0.1 mg/L	U	OK
TW4-60	Chloride	1 mg/L	1 mg/L	U	OK
TW4-65	Chloroform	100 ug/L	1.0 ug/L	D	OK
TW4-65	Chloromethane	1 ug/L	1.0 ug/L	U	OK
TW4-65	Methylene chloride	1 ug/L	1.0 ug/L		OK
TW4-65	Carbon Tetrachloride	l ug/L	1.0 ug/L		OK
TW4-65	Nitrogen	2 mg/L	0.1 mg/L	D	OK
TW4-65	Chloride	1 mg/L	1 mg/L		OK
TW4-70	Chloroform	100 ug/L	1.0 ug/L	D	OK
TW4-70	Chloromethane	1 ug/L	1.0 ug/L	U	OK
TW4-70	Methylene chloride	1 ug/L	1.0 ug/L	U	OK
TW4-70	Carbon Tetrachloride	1 ug/L	1.0 ug/L	U	OK
TW4-70	Nitrogen	1 mg/L	0.1 mg/L	D	OK
TW4-70	Chloride	1 mg/L	1 mg/L		OK

U = Analyte was not detected at the RL

D = RL was increased due to sample matrix or required dilution due to the sample concentration. In all cases the analytical

I-6 Trip Blank Evaluation

Lab Report	Constituent	Result
C11020540	Carbon tetrachloride	ND ug/L
	Chloroform	ND ug/L
	Chloromethane	ND ug/L
	Methylene chloride	ND ug/L
C11020714	Carbon tetrachloride	ND ug/L
	Chloroform	ND ug/L
	Chloromethane	ND ug/L
	Methylene chloride	ND ug/L

Constituent	TW4-19	TW4-65	%RPD
Carbon Tetrachloride	17	15	13
Chloride	135	134	1
Chloroform	3400	5600	49
Chloromethane	ND	ND	NC
Methylene Chloride	ND	ND	NC
Nitrate	17	17	0

Constituent	TW4-10	TW4-70	%RPD
Carbon Tetrachloride	ND	ND	NC
Chloride	62	65	5
Chloroform	620	810	27
Chloromethane	ND	ND	NC
Methylene Chloride	ND	ND	NC
Nitrate	9	9	0

ND = Not detected

NC = Not calculated

RPD > 20

I-8 QC Control Limits for Analysis and Blanks

Matrix Spike % Recovery Comparison

				MS	MSD	REC	
Lab Report	Lab Sample ID	Well	Analyte	%REC	%REC	Range	RPD
C11020540	C11020714-012	TW4-20	Chloroform	165	137	70 - 130	6
C11020714	C11020714-012	TW4-20	Carbon Tetrachloride	136	128	70 - 130	6
C11020714	C11020714-012	TW4-20	Chloroform	165	137	70 - 130	6

Surrogate % Recovery

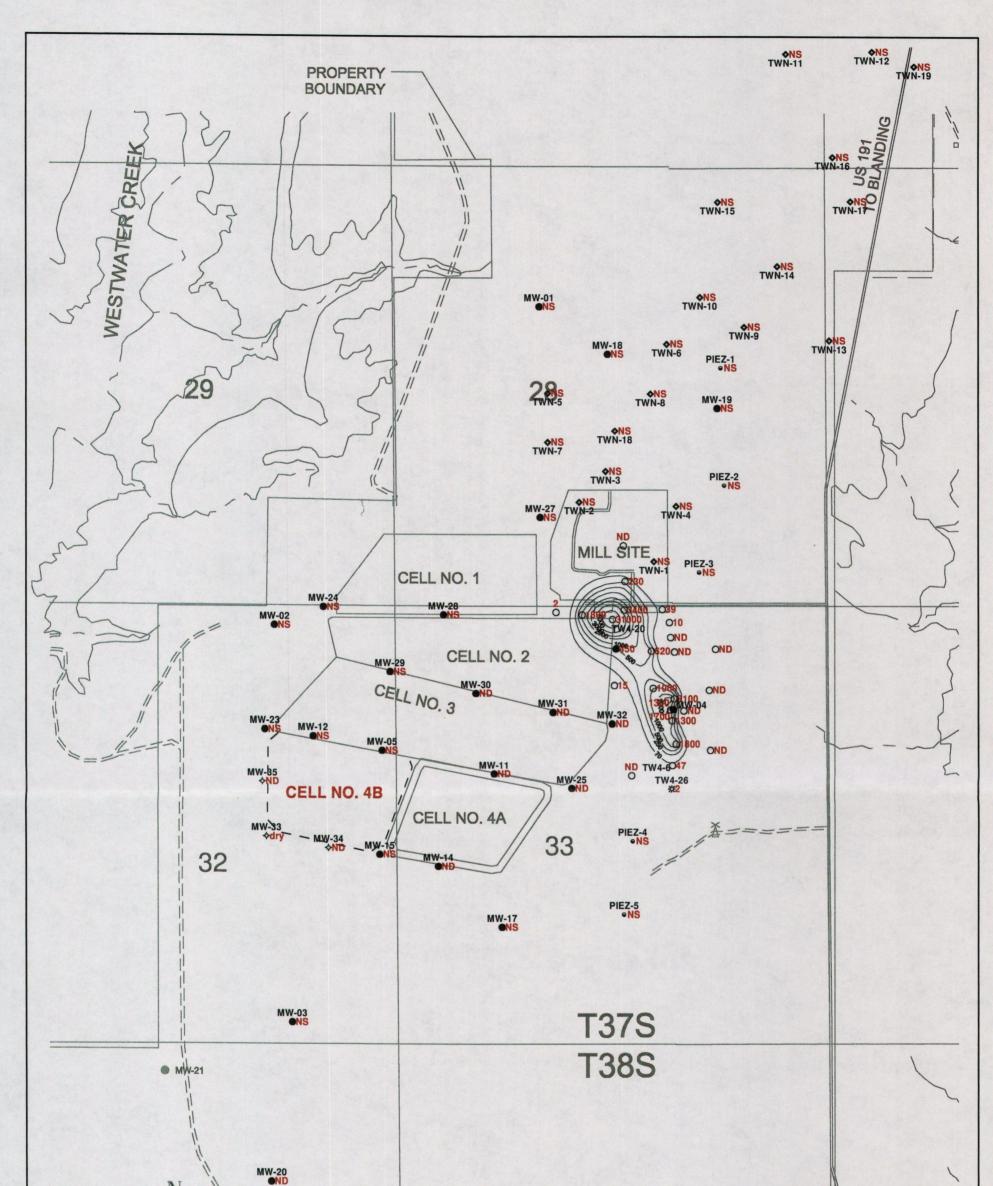
				Lab Specified REC	QAP Required
Lab Report	Well/Sample	Analyte	Surrogate %REC	Range	Range
C11020714	TW4-70	Dibromofluoromethane	131	70 - 130	None

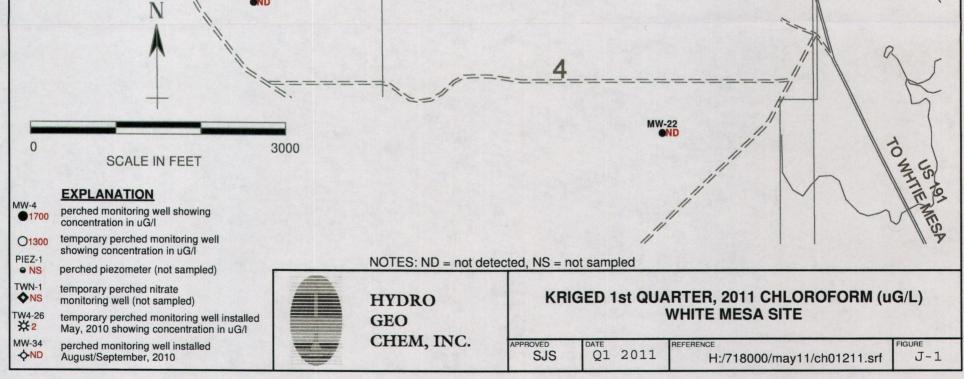
I-9 Rinsate Evaluation

.

Rinsate Sample	Parameter	Rinsate	Result	Previous Well Sampled	Result Previous Samp	Well	Qualifier	Rinsate Reporting Limit
TW4-1R	Nitrogen	0.4	mg/L	TW4-7	3.6	mg/L	D	0.1 mg/L
TW4-3R	Nitrogen	0.2	mg/L	None - rinsate collected at the begining of the program	NA	mg/L		0.1 mg/L
TW4-9R	Nitrogen	0.2	mg/L	TW4-8	ND	mg/L		0.1 mg/L
TW4-16R	Nitrogen	0.2	mg/L	TW4-19	17	mg/L	D	0.1 mg/L
TW4-22R	Nitrogen	0.2	mg/L	TW4-21	9	mg/L	D	0.1 mg/L
TW4-23R	Nitrogen	ND	mg/L	TW4-14	1.8	mg/L		0.1 mg/L

.


Previous well sampled is the well that the pump was used to purge prior to the rinsate sample.


D = Reporting limit raised due to dilution/sample matrix.

Tab J

1

Kriged Current Quarter Chloroform Isoconcentration Map

Tab K

Analyte Concentrations Over Time

MW-4	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
28-Sep-99	6200	(<u>_</u> _,				
28-Sep-99	5820					
28-Sep-99	6020					
15-Mar-00	5520					
15-Mar-00	5430	· · · · · · · · · · · · · · · · · · ·				
2-Sep-00	5420				9.63	
30-Nov-00	6470				9.37	
29-Mar-01	4360			<u>. </u>	8.77	
22-Jun-01	6300		· · · · · · · · · · · · · · · · · · ·		9.02	
20-Sep-01	5300				9.45	
8-Nov-01	5200				8	
26-Mar-02	4700				8.19	
22-May-02	4300		· · · · · · · · · · · · · · · · · · ·		8.21	
12-Sep-02	6000				8.45	
24-Nov-02	2500				8.1	
28-Mar-03	2000				8.3	
30-Apr-03	3300				NA	
30-May-03	3400				8.2	
23-Jun-03	4300				8.2	
30-Jul-03	3600				8.1	
29-Aug-03	4100				8.4	
12-Sep-03	3500				8.5	
15-Oct-03	3800				8.1	
8-Nov-03	3800				8	
29-Mar-04	NA				NA	
22-Jun-04	NA				NA	
17-Sep-04	3300				6.71	
17-Nov-04	4300				7.5	
16-Mar-05	2900				6.3	
25-May-05	3170	NA	NA	NA	7.1	NA
31-Aug-05	3500	<10	<10	<10	7.0	NA
1-Dec-05	3000	<50	<50	<50	7.0	NA
9-Mar-06	3100	<50	<50	50	6	49
14-Jun-06	3000	<50	<50	50	6	49
20-Jul-06	2820	<50	<50	<50	1.2	48
9-Nov-06	2830	2.1	1.4	<1	6.4	50
28-Feb-07	2300	1.6	<1	<1	6.3	47
27-Jun-07	2000	1.8	<1	<1	7	45
15-Aug-07	2600	1.9	<1	<1	6.2	47
10-Oct-07	2300	1.7	<1	<1	6.2	45
26-Mar-08	2400	1.7	<1	<1	5.8	42
25-Jun-08	2500	1.6	<1	<1	6.09	42
10-Sep-08	1800	1.8	<1	<1	6.36	35
15-Oct-08	2100	1.7	<1	<1	5.86	45
4-Mar-09	2200	1.5	<1	<1	5.7	37

•

.

Ĭ

MW-4	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
23-Jun-09	1800	1.3	<1	<1	5.2	34
14-Sep-09	2000	1.4	<1	<1	5.3	43
14-Dec-09	1800	1.6	ND	ND	5.8	44
17-Feb-10	1600	1.2	ND	ND	4	45
14-Jun-10	2100	1.2	ND	ND	5.1	41
16-Aug-10	1900	1.5	ND	NĎ	4.8	38
11-Oct-10	1500	1.4	ND	ND	4.9	41
23-Feb-11	1700	1.5	ND	ND	4.6	40

TW4-1	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chioromethane (ug/l)	Methylène Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
28-Jun-99	1700				7.2	
10-Nov-99	5.8					
15-Mar-00	1100					
10-Apr-00	1490	· · · · · · · · · · · · · · · · · · ·				1
6-Jun-00	1530					
2-Sep-00	2320				5.58	
30-Nov-00	3440				7.79	
29-Mar-01	2340				7.15	
22-Jun-01	6000				8.81	
20-Sep-01	· · · ·				12.8	
8-Nov-01	3200				12.4	
26-Mar-02	3200				13.1	
22-May-02	2800				12.7	
12-Sep-02	3300				12.8	
24-Nov-02	3500				13.6	
28-Mar-03	3000				12.4	
23-Jun-03	3600				12.5	
12-Sep-03	2700				12.5	
8-Nov-03	3400				11.8	
29-Mar-04	3200				11	
22-Jun-04	3100				8.78	
17-Sep-04	2800				10.8	
17-Nov-04	3000				11.1	
16-Mar-05	2700				9.1	
25-May-05	3080	NA	NA	NA	10.6	NA
31-Aug-05	2900	<10	<10	<10	9.8	NA
1-Dec-05	2400	<50	<50	<50	9.7	NA
9-Mar-06	2700	<50	<50	<50	9.4	49
14-Jun-06	2200	<50	<50	<50	9.8	48
20-Jul-06	2840	<50	<50	<50	9.7	51
8-Nov-06	2260	1.4	<1	<1	9.4	47
28-Feb-07	1900	1.2	<1	<1	8.9	47
27-Jun-07	1900	1.4	<1	<1	9	45
15-Aug-07	2300	1.3	<1	<1	8.4	43
10-Oct-07	2000	1.3	<1	<1	7.8	43
26-Mar-08	2000	1.3	<1	<1	7.6	39
25-Jun-08	1900	1.1	<1	<1	8.68	39
10-Sep-08	1700	1.3	<1	<1	8.15	35
15-Oct-08	1700	1.3	<1	<1	9.3	41

TW4-1	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
11-Mar-09	1700	1.1	<1	<1	7.5	37
24-Jun-09	1500	1	<1	<1	6.9	37
15-Sep-09	1700	<1	<1	<1	7.3	36
29-Dec-09	1400	<1	<1	<1	6.8	41
3-Mar-10	1300	<1	<1	<1	7.1	35
15-Jun-10	1600	1.2	<1	<1	6.8	40
24-Aug-10	1500	<1	<1	<1	6.8	35
14-Oct-10	1500	<1	<1	<1	6.6	40
24-Feb-11	1300	ND	ND	ND	6.6	41

TW4-2	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
10-Nov-99	2510					T T
2-Sep-00	5220					
28-Nov-00	4220				10.7	
29-Mar-01	3890				10.2	
22-Jun-01	5500				9.67	
20-Sep-01	4900				11.4	
8-Nov-01	5300				10.1	
26-Mar-02	5100				9.98	Γ
23-May-02	4700				9.78	
12-Sep-02	6000				9.44	
24-Nov-02	5400				10.4	
28-Mar-03	4700				9.5	1
23-Jun-03	5100				9.6	
12-Sep-03	3200				8.6	
8-Nov-03	4700				9.7	
29-Mar-04	4200				9.14	
22-Jun-04	4300				8.22	
17-Sep-04	4100				8.4	
17-Nov-04	4500				8.6	
16-Mar-05	3700				7.7	
25-May-05	3750			- <u> </u>	8.6	
31-Aug-05	3900	<10	<10	<10	8	NA
1-Dec-05	3500	<50	<50	<50	7.8	NA
9-Mar-06	3800	<50	<50	<50	7.5	56
14-Jun-06	3200	<50	<50	<50	7.1	56
20-Jul-06	4120	<50	<50	<50	7.4	54
8-Nov-06	3420	2.3	<1	<1	7.6	55
28-Feb-07	2900	1.8	<1	<1	7.3	54
27-Jun-07	3000	2.5	<1	<1	7.8	50
15-Aug-07	340	2.2	<1	<1	7.3	49
10-Oct-07	3200	2.1	<1	<1	6.9	51
26-Mar-08	3300	2.3	<1	<1	6.9	48
25-Jun-08	3100	2.2	<1	<1	7.44	46
10-Sep-08	2800	2.4	<1	<1	7.1	42
15-Oct-08	3200	2.4	<2	<2	7.99	47
11-Mar-09	3100	2.2	<1	<1	6.5	46
24-Jun-09	2800	2	<1	<1	6.4	44
15-Sep-09	3000	2	<1	<1	6.6	43
29-Dec-09	1600	2	<1	<1	6.4	46

I

TW4-2	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
3-Mar-10	2600	2	<1	<1	6.8	42
15-Jun-10	3300	2.6	<1	<1	6.7	43
16-Aug-10	3300	2.5	<1	<1	6.6	43
14-Oct-10	3000	2.1	<1	<1	6.5	41
24-Feb-11	3100	2.4	ND	ND	7	46

TW4-3	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
28-Jun-99	3500				7.6	
29-Nov-99	702	· · · · · · · · · · · · · · · · · · ·	<u> </u>			
15-Mar-00	834		· · · · · · · · · · · · · · · · · · ·			
2-Sep-00	836				1.56	
29-Nov-00	836				1.97	
27-Mar-01	347				1.85	
21-Jun-01	390				2.61	
20-Sep-01	300				3.06	
7-Nov-01	170				3.6	
26-Mar-02	11				3.87	
21-May-02	204				4.34	
12-Sep-02	203				4.32	
24-Nov-02	102				4.9	
28-Mar-03	0				4.6	
23-Jun-03	0	-			4.8	1
12-Sep-03	0				4.3	
8-Nov-03	0				4.8	[
29-Mar-04	0	· · · · · · · · · · · · · · · · · · ·			4.48	
22-Jun-04	0				3.68	
17-Sep-04	0				3.88	
17-Nov-04	0				4.1	
16-Mar-05	0			<u></u>	3.5	
25-May-05	<1	NA	NA	NA	3.7	NA
31-Aug-05	<1	<1	6.4	<1	3.5	NA
1-Dec-05	<1	<1	2.3	<1	3.3	NA
9-Mar-06	<1	<1	2.2	<1	3.3	26
14-Jun-06	<1	<1	<1	<1	3.2	26
20-Jul-06	<1	<1	1.6	<1	2.9	26
8-Nov-06	<1	<1	<1	<1	1.5	23
28-Feb-07	<1	<1	<1	<1	3.1	22
27-Jun-07	<1	<1	<1	<1	3.3	23
15-Aug-07	<1	<1	<1	<1	3.1	24
10-Oct-07	<1	<1	<1	<1	2.8	27
26-Mar-08	<1	<1	<1	<1	2.8	21
25-Jun-08	<1	<1	<1	<1	2.85	19
10-Sep-08	<1	<1	<1	<1	2.66	19
15-Oct-08	<1	<1	<1	<1	2.63	22
4-Mar-09	<1	<1	<1	<1	2.5	21
24-Jun-09	<1	<1	<1	<1	2.9	20

I

TW4-3	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
15-Sep-09	<1	<1	<1	<1	2.8	21
16-Dec-09	<1	<1	<1	<1	2.5	22
23-Feb-10	<1	<1	<1	<1	2.8	23
8-Jun-10	<1	<1	<1	<1	3	24
10-Aug-10	<1	<1	<1	<1	3.1	22
5-Oct-10	<1	<1	<1	<1	3.3	26
15-Feb-11	ND	ND	ND	ND	3.5	23

•

TW4-4	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chioromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
6-Jun-00	0					
2-Sep-00	0				-	
28-Nov-00	3.9					
28-Mar-01	2260				1.02	
20-Jun-01	3100				14.5	
20-Sep-01	3200				14	
8-Nov-01	2900				14.8	
26-Mar-02	3400				15	i
22-May-02	3200				13.2	1
12-Sep-02	4000				13.4	[
24-Nov-02	3800				12.6	1
28-Mar-03	3300	·			13.4	
23-Jun-03	3600				12.8	
12-Sep-03	2900				12.3	
8-Nov-03	3500				12.3	
29-Mar-04	3200				12.2	
22-Jun-04	3500				12.1	
17-Sep-04	3100		· · · · · · · · · · · · · · · · · · ·		11.1	
17-Nov-04	3600				10.8	
16-Mar-05	3100				11.6	
25-May-05	2400	NA	NA	NA	11.3	NA
31-Aug-05	3200	<10	<10	<10	9.9	NA
1-Dec-05	2800	<50	<50	<50	10.2	NA
9-Mar-06	2900	<50	<50	<50	9.5	51
14-Jun-06	2600	<50	<50	<50	8.6	48
20-Jul-06	2850	<50	<50	<50	9.7	50
8-Nov-06	2670	1.7	<1	<1	10.1	49
28-Feb-07	2200	1.5	<1	<1	9	49
27-Jun-07	2400	1.7	<1	<1	9.4	47
15-Aug-07	2700	1.5	<1	<1	9.5	45
10-Oct-07	2500	1.5	<1	<1	9.5	47
26-Mar-08	2800	1.6	<1	<1	9.2	43
25-Jun-08	2500	1.5	<1	<1	10.8	42
10-Sep-08	2200	1.4	<1	<1	8.83	39
15-Oct-08	2500	2	<2	<2	10.1	44
4-Mar-09	2200	1.2	<1	<1	10.2	37
24-Jun-09	1800	1.2	<1	<1	8.2	34
15-Sep-09	2000	1.1	<1	<1	8.4	39
29-Dec-09	950	1.1	<1	<1	7.6	41

TW4-4	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
17-Feb-10	1700	1	<1	<1	6.6	48
10-Jun-10	2000	1.2	<1	<1	7.6	35
16-Aug-10	2100	1.3	<1	<1	7.3	36
11-Oct-10	1700	1.3	<1	<1	7.1	38
23-Feb-11	1800	1.4	ND	ND	7	41

TW4-5	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
20-Dec-99	29.5					
15-Mar-00	49.0					
2-Sep-00	124					
29-Nov-00	255				· · · · · · · · · · · · · · · · · · ·	
28-Mar-01	236					
20-Jun-01	240					
20-Sep-01	240	· · · · · · · · · · · · · · · · · · ·				
7-Nov-01	260					
26-Mar-02	260		· · · · · · · · · · · · · · · · · · ·			
22-May-02	300					
12-Sep-02	330					
24-Nov-02	260					
28-Mar-03	240					
23-Jun-03	290			_		
12-Sep-03	200					
8-Nov-03	240					
29-Mar-04	210					
22-Jun-04	200	· · · · · · · · · · · · · · · · · · ·				
17-Sep-04	150					
17-Nov-04	180					
16-Mar-05	120					
25-May-05	113	NA	NA	NA	3.7	NA
31-Aug-05	82.0	<2.5	5.8	<2.5	6	NA
1-Dec-05	63.0	<2.5	2.5	<2.5	6	NA
9-Mar-06	66.0	<2.5	3.1	<2.5	6	52
14-Jun-06	51.0	<1	<2.5	<2.5	5.9	51
20-Jul-06	53.7	<1	<1	<1	6.7	54
8-Nov-06	47.1	<1	<1	<1	2.9	55
28-Feb-07	33.0	<1	<1	<1	7.8	57
27-Jun-07	26.0	<1	<1	<1	7	45
15-Aug-07	9.2	<1	<1	<1	7.7	38
10-Oct-07	9.4	<1	<1	<1	8.2	39
26-Mar-08	11.0	<1	<1	<1	7.4	36
25-Jun-08	9.3	<1	<1	<1	8.7	37
10-Sep-08	11.0	<1	<1	<1	7.91	34
15-Oct-08	10.0	<1	<1	<1	9.3	37
4-Mar-09	12.0	<1	<1	<1	7.9	34
24-Jun-09	13.0	<1	<1	<1	7.5	37
15-Sep-09	12.0	<1	<1	<1	8.3	48

TW4-5	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
22-Dec-09	8.5	<1	<1	<1	7.5	41
25-Feb-10	13.0	<1	<1	<1	6.8	43
9-Jun-10	12.0	<1	<1	<1	7.1	28
11-Aug-10	12.0	<1	<1	<1	7	38
13-Oct-10	11.0	<1	<1	<1	7.2	41
22-Feb-11	10.0	ND	ND	ND	7	34

TW4-6	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
6-Jun-00	0	(B/		<u> </u>		
2-Sep-00	0					
28-Nov-00	0				ND	1
26-Mar-01	0				0.13	
20-Jun-01	0				ND	
20-Sep-01	4				ND	
7-Nov-01	1				ND	
26-Mar-02	0				ND	1
21-May-02	0				ND	
12-Sep-02	0				ND	
24-Nov-02	0				ND	
28-Mar-03	0				0.1	
23-Jun-03	0				ND	
12-Sep-03	0				ND	
8-Nov-03	0				ND	
29-Mar-04	0				ND	·
22-Jun-04	0				ND	
17-Sep-04	0				ND	
17-Nov-04	0				ND	
16-Mar-05	0				0.2	
25-May-05	2.5	NA	NA	NA	0.4	NA
31-Aug-05	10.0	<1	2.8	<1	0.8	NA
1-Dec-05	17.0	<1	1.3	<1	0.9	NA
9-Mar-06	31.0	<1	<1	<1	1.2	31
14-Jun-06	19.0	<1	<1	<1	1	30
20-Jul-06	11.0	<1	<1	<1	0.6	37
8-Nov-06	42.8	<1	<1	<1	1.4	65
28-Feb-07	46.0	<1	<1	<1	1.5	32
27-Jun-07	11.0	<1	<1	<1	0.6	38
15-Aug-07	18.0	<1	<1	<1	0.7	36
10-Oct-07	18.0	<1	<1	<1	0.8	38
26-Mar-08	52.0	<1	<1	<1	1.1	33
25-Jun-08	24.0	<1	<1	<1	0.9	35
10-Sep-08	39.0	<1	<1	<1	1.14	35
15-Oct-08	37.0	<1	<1	<1	1.01	33
11-Mar-09	81.0	<1	<1	<1	2.2	35
24-Jun-09	120	<1	<1	<1	2.7	37
15-Sep-09	280	<1	<1	<1	5.0	37
22-Dec-09	250	<1	<1	<1	6.1	41
25-Feb-10	1000	<1	<1	<1	1.6	45
10-Jun-10	590	<1	<1	<1	2.5	33
12-Aug-10	630	<1	<1	<1	3.9	31
13-Oct-10	420	<1	<1	<1	4.3	41

TW4-6	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
23-Feb-11	47	ND	ND	ND	0.7	40

TW4-7	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chłoride (mg/l)
29-Nov-99	256					
15-Mar-00	616					Î
2-Sep-00	698					
29-Nov-00	684				1.99	
28-Mar-01	747				2.46	
20-Jun-01	1100				2.65	
20-Sep-01	1200				3.38	
8-Nov-01	1100				2.5	
26-Mar-02	1500	····· ····			3.76	
23-May-02	1600				3.89	
12-Sep-02	1500			·	3.18	
24-Nov-02	2300				4.6	
28-Mar-03	1800				4.8	
23-Jun-03	5200				7.6	
12-Sep-03	3600				7.6	
8-Nov-03	4500				7.1	
29-Mar-04	2500				4.63	
22-Jun-04	2900				4.83	
17-Sep-04	3100				5.59	
17-Nov-04	3800				6	
16-Mar-05	3100	· · ·			5.2	
25-May-05	2700	NA	NA	NA	5.4	NA
31-Aug-05	3100	<10	<10	<10	5.2	NA
1-Dec-05	2500	<50	<50	<50	5.3	NA
9-Mar-06	1900	<50	<50	<50	1	48
14-Jun-06	2200	<50	<50	<50	4.5	47
20-Jul-06	2140	<50	<50	<50	4.7	51
8-Nov-06	2160	1.5	<1	<1	4.6	49
28-Feb-07	1800	1.1	<1	<1	5	47
27-Jun-07	2600	1.5	<1	<1	5.1	45
14-Aug-07	2300	1.4	<1	<1	4.7	44
10-Oct-07	1900	1.2	<1	<1	4.7	45
26-Mar-08	2200	1.3	<1	<1	4.2	43
25-Jun-08	1800	1.3	<1	<1	4.8	43
10-Sep-08	1600	1.4	<1	<1	4.16	35
15-Oct-08	1900	<2	<2	<2	4.01	40
11-Mar-09	1800	1.2	<1	<1	3.7	35
24-Jun-09	1400	<1	<1	<1	3.8	37
15-Sep-09	1500	1.0	<1	<1	4.1	37

TW4-7	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
29-Dec-09	1300	<1	<1	<1	4.2	37
3-Mar-10	1200	<1	<1	<1	3.8	36
10-Jun-10	1100	<1	<1	<1	3.9	31
18-Aug-10	1500	1.1	<1	<1	3.9	36
13-Oct-10	1100	1.1	<1	<1	- 4	38
23-Feb-11	1300	ND	ND	ND	3.6	45

TW4-8	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
29-Nov-99	0					
15-Mar-00	21.8					
2-Sep-00	102					
29-Nov-00	107				ND	
26-Mar-01	116				ND	
20-Jun-01	180				ND	
20-Sep-01	180				0.35	
7-Nov-01	180	· · · · · · · · · · · · · · · · · · ·			ND	
26-Mar-02	190				0.62	
22-May-02	210				0.77	
12-Sep-02	300				ND	
24-Nov-02	450				ND	
28-Mar-03	320				0.8	
23-Jun-03	420				ND	
12-Sep-03	66.0				ND	
8-Nov-03	21.0				0.1	
29-Mar-04	24.0				0.65	
22-Jun-04	110				0.52	
17-Sep-04	120				ND	
17-Nov-04	120				ND	
16-Mar-05	10.0				ND	
25-May-05	<1	NA	NA	NA	0.2	NA
31-Aug-05	1.1	<1	1.7	<1	<0.1	NA
30-Nov-05	<1	<1	<1	<1	<0.1	NA
9-Mar-06	1.3	<1	2.1	<1	0.3	39
14-Jun-06	1.0	<1	1.8	<1	<0.1	37
20-Jul-06	<1	<1	<1	<1	0.1	39
8-Nov-06	<1	<1	<1	<1	<0.1	40
28-Feb-07	2.5	<1	<1	<1	0.7	39
27-Jun-07	2.5	<1	<1	<1	0.2	42
15-Aug-07	1.5	<1	<1	<1	<0.1	42
10-Oct-07	3.5	<1	<1	<1	0.5	43
26-Mar-08	<1	<1	<1	<1	0.1	46
25-Jun-08	<1	<1	<1	<1	< 0.05	45
10-Sep-08	<1	<1	<1	<1	<0.05	39
15-Oct-08	<1	<1	<1	<1	<0.05	- 44
4-Mar-09	<1	<1	<1	<1	<0.1	42
24-Jun-09	<1	<1	<1	<1	<0.1	44
15-Sep-09	<1	<1	<1	<1	<1	44

¢

1

TW4-8	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
17-Dec-09	<1	<1	<1	<1	<0.1	51
24-Feb-10	<1	<1	<1	<1	< 0.1	57
9-Jun-10	<1	<1	<1	<1	<0.1	42
11-Aug-10	<1	<1	<1	<1	<0.1	45
5-Oct-10	<1	<1	<1	<1	<0.1	46
16-Feb-11	ND	ND	ND	ND	ND	52

TW4-9	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
20-Dec-99	4.2					
15-Mar-00	1.9					
2-Sep-00	14.2					Ī
29-Nov-00	39.4				ND	1
27-Mar-01	43.6				ND	
20-Jun-01	59.0				0.15	
20-Sep-01	19.0				0.4	[
7-Nov-01	49.0				0.1	
26-Mar-02	41.0				0.5	
22-May-02	38.0				0.65	
12-Sep-02	49.0				0.2	
24-Nov-02	51.0				0.6	
28-Mar-03	34.0				0.6	
23-Jun-03	33.0				0.8	
12-Sep-03	32.0				1.1	[]
8-Nov-03	46.0			-	1.1	
29-Mar-04	48.0		· · · · ·		0.82	
22-Jun-04	48.0				0.75	
17-Sep-04	39.0				0.81	
17-Nov-04	26.0				1.2	
16-Mar-05	3.8				1.3	
25-May-05	1.2	NA	NA	NA	1.3	NA
31-Aug-05	<1	<1	2.9	<1	1.3	NA
1-Dec-05	<1	<1	<1	<1	1.3	NA
9-Mar-06	<1	<1	2.6	<1	1.5	38
14-Jun-06	<1	<1	2.7	<1	1.5	39
20-Jul-06	<1	<1	<1	<1	0.9	41
8-Nov-06	<1	<1	<1	<1	0.7	44
28-Feb-07	<1	<1	<1	<1	0.6	44
27-Jun-07	21	<1	<1	<1	1.3	42
15-Aug-07	9.5	<1	<1	<1	1.8	38
10-Oct-07	8.7	<1	<1	<1	2	40
26-Mar-08	1.3	<1	<1	<1	2.1	35
25-Jun-08	1.0	<1	<1	<1	2.3	35
10-Sep-08	<1	<1	<1	<1	2.79	28
15-Oct-08	<1	<1	<1	<1	1.99	58
4-Mar-09	<1	<1	<1	<1	2.5	30
24-Jun-09	<1	<1	<1	<1	2.3	30
15-Sep-09	<1	<1	<1	<1	2.5	30

TW4-9	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
17-Dec-09	<1	<1	<1	<1	1.7	37
23-Feb-10	<1	<1	<1	<1	1.7	47
9-Jun-10	<1	<1	<1	<1	1.5	33
11-Aug-10	<1	<1	<1	<1	1.2	40
6-Oct-10	<1	<1	<1	<1	1.8	34
17-Feb-11	ND	ND	ND	ND	1.3	41

.

TW4-10	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
21-Jan-02	14					
26-Mar-02	16				0.14	
21-May-02	17				0.11	
12-Sep-02	6				ND	
24-Nov-02	14				ND	
28-Mar-03	29				0.2	
23-Jun-03	110				0.4	
12-Sep-03	74				0.4	
8-Nov-03	75				0.3	
29-Mar-04	22				0.1	
22-Jun-04	32		· · · · · · · · · · · · · · · · · · ·		ND	
17-Sep-04	.63				0.46	
17-Nov-04	120				0.4	
16-Mar-05	140				1.6	
25-May-05	62.4	NĀ	NA	NA	0.8	NA
31-Aug-05	110	<2.5	6.2	<2.5	1.1	NA
1-Dec-05	300	<2.5	<2.5	<2.5	3.3	NA
9-Mar-06	190	<5	<50	<50	2.4	50
14-Jun-06	300	<5	<50	<50	3.5	54
20-Jul-06	504	<5	<50	<50	6.8	61
8-Nov-06	452	<1	1.6	1	5.7	58
28-Feb-07	500	<1	<1	1	7.6	62
27-Jun-07	350	<1	<1	1	5.1	54
15-Aug-07	660	<1	<1	1	7.3	59
10-Oct-07	470	<1	<1	1	6.7	59
26-Mar-08	620	<1	<1	1	7.3	55
25-Jun-08	720	<1	<1	1	9.91	58
10-Sep-08	680	<1	<1	1	9.23	51
15-Oct-08	1200	<2	<2	2	10.5	61
11-Mar-09	1100	<1	<1	1	11.6	64
24-Jun-09	1200	<1	<1	1	9.8	62
15-Sep-09	910	<1	<1	1	8.1	51
22-Dec-09	300	<1	<1	<1	3.5	51
3-Mar-10	460	<1	<1	<1	5	49
10-Jun-10	220	<1	<1	<1	1.6	42
12-Aug-10	100	<1	<1	<1	0.8	38
13-Oct-10	1100	<1	<1	<1	11	52
23-Feb-11	620	ND	ND	ND	9	62

TW4-11	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
21-Jan-02	4700					
26-Mar-02	4900				9.6	
22-May-02	5200				9.07	
12-Sep-02	6200				8.84	
24-Nov-02	5800				9.7	
28-Mar-03	5100				9.7	
23-Jun-03	5700				9.4	
12-Sep-03	4600				9.9	
8-Nov-03	5200	······································			9.3	
29-Mar-04	5300				9.07	
22-Jun-04	5700				8.74	
17-Sep-04	4800				8.75	
17-Nov-04	5800				9.7	
16-Mar-05	4400				8.7	
25-May-05	3590	NA	NA	NA	10.3	NA
31-Aug-05	4400	<10	<10	<10	9.4	NA
1-Dec-05	4400	<100	<100	<100	9.4	NA
9-Mar-06	4400	<50	<50	<50	9.2	56
14-Jun-06	4300	<50	<50	<50	10	56
20-Jul-06	4080	<50	<50	<50	10	55
8-Nov-06	3660	1.7	2.7	1.3	10	55
28-Feb-07	3500	1.3	<1	1.6	10.1	54
27-Jun-07	3800	1.6	<1	1.1	10.6	53
15-Aug-07	4500	1.7	<1	1.1	10.2	53
10-Oct-07	4400	1.6	<1	1.2	9.8	53
26-Mar-08	340	<1	<1	<1	7.7	63
25-Jun-08	640	<1	<1	<1	7.28	46
10-Sep-08	900	<1	<1	<1	7.93	42
15-Oct-08	1000	<2	<2	<2	9.46	47
11-Mar-09	1100	<1	<1	<1	7.3	49
24-Jun-09	980	<1	<1	<1	6.8	44
15-Sep-09	1000	<1	<1	<1	7	49
29-Dec-09	860	<1	<1	<1	6.6	46
3-Mar-10	820	<1	<1	<1	6.8	42
10-Jun-10	820	<1	<1	<1	6.9	40
12-Aug-10	800	<1	<1	<1	6.7	43
13-Oct-10	720	<1	<1	<1	6.4	49
23-Feb-11	1000	ND	ND	ND	6.5	46

TW4-12	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
12-Sep-02	2				2.54	
24-Nov-02	0				2.2	[
28-Mar-03	0	······································			1.9	
23-Jun-03	0				1.8	
12-Sep-03	0				1.8	
9-Nov-03	0				1.6	
29-Mar-04	0				1.58	
22-Jun-04	0				1.4	
17-Sep-04	0				1.24	
17-Nov-04	0				1.5	
16-Mar-05	0				1.4	· · · · · ·
25-May-05	<1	NA	NA	NA	1.6	NA
31-Aug-05	<1	<1	5.8	<1	1.5	NA
1-Dec-05	<1	<1	1.9	<2	1.4	NA
9-Mar-06	<1	<1	2.6	<1	1.3	19
14-Jun-06	<1	<1	1.4	<1	1.4	16
20-Jul-06	<1	<1	<1	<1	1.4	16
8-Nov-06	<1	<1	<1	<1	1.4	16
28-Feb-07	<1	<1	<1	<1	1.5	16
27-Jun-07	<1	<1	<1	<1	1,5	18
15-Aug-07	<1	<1	<1	<1	1.4	29
10-Oct-07	<1	<1	<1	<1	1.4	16
26-Mar-08	<1	<1	<1	<1	1.6	16
25-Jun-08	<1	<1	<1	<1	2.69	19
10-Sep-08	<1	<1	<1	<1	2.65	18
15-Oct-08	<1	<1	<1	<1	2.47	22
4-Mar-09	<1	<1	<1	<1	2.4	23
24-Jun-09	<1	<1	<1	<1	3.8	22
15-Sep-09	<1	<1	<1	<1	5.1	22
16-Dec-09	<1	<1	<1	<1	3.6	23
23-Feb-10	<1	<1	<1	<1	4	22
8-Jun-10	<1	<1	<1	<1	11	29
10-Aug-10	<1	<1	<1	<1	9	35
5-Oct-10	<1	<1	<1	<1	8	31
15-Feb-11	ND	ND	ND	ND	6.5	31

.

TW4-13	Chloroform (ug/l)	Carbon Tetrachlo ride (ug/l)	Chlorom ethane (ug/l)	Methylen e Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
12-Sep-02	ND				ND	
24-Nov-02	ND				ND	
28-Mar-03	ND				0.2	
23-Jun-03	ND				0.2	
12-Sep-03	ND				ND	
9-Nov-03	ND				0.9	
29-Mar-04	ND				0.12	
22-Jun-04	ND				0.17	
17-Sep-04	ND				4.43	
17-Nov-04	ND				4.7	ļ
16-Mar-05	ND				4.2	NA
25-May-05	<1	NA	NA	NA	4.3	NA NA
31-Aug-05 1-Dec-05	<1	<1	3.1	<1 <1	4.0	NA NA
9-Mar-06	<1	<1	<1 1.7	<1	4.3	67
14-Jun-06	<1	<1	1.7	<1	4.9	66
20-Jul-06	<1	<1	<1	<1	4.3	65
8-Nov-06	<1	<1	<1	<1	0.8	33
28-Feb-07	<1	<1	<1	<1	4	59
27-Jun-07	<1	<1	<1	<1	4.6	59
15-Aug-07	<1	<1	<1	<1	4.4	58
10-Oct-07	<1	<1	<1	<1	4.1	58
26-Mar-08	<1	<1	<1	<1	3.8	54
25-Jun-08	<1	<1	<1	<1	4.24	58
10-Sep-08	<1	<1	<1	<1	4.26	50
15-Oct-08	<1	<1	<1	<1	4.63	58
4-Mar-09	<1	<1	<1	<1	3.7	58
24-Jun-09	<1	<1	<1	<1	1.2	57
15-Sep-09	<1	<1	<1	<1	4.7	63
16-Dec-09	<1	<1	<1	<1	4.1	60
24-Feb-10	<1	<1	<1	<1	4.3	53
8-Jun-10	<1	<1	<1	<1	5.2	52
10-Aug-10	<1	<1	<1	<1	5.6	55
5-Oct-10	<1	<1	<1	<1	5.8	55
15-Feb-11	ND	ND	ND	ND	5.5	60

TW4-14	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
8-Nov-06	<1	<1	<1	<1	2.4	37
28-Feb-07	<1	<1	<1	<1	2.3	38
27-Jun-07	<1	<1	<1	<1	1.4	38
15-Aug-07	<1	<1	<1	<1	1.1	36
10-Oct-07	<1	<1	<1	<1	0.8	36
26-Mar-08	<1	<1	<1	<1	0.04	57
25-Jun-08	<1	<1	<1	<1	1.56	35
10-Sep-08	<1	<1	<1	<1	1.34	34
15-Oct-08	<1	<1	<1	<1	0.76	40
4-Mar-09	<1	<1	<1	<1	1.6	35
24-Jun-09	<1	<1	<1	<1	1.4	36
15-Sep-09	<1	<1	<1	<1	1.5	38
16-Dec-09	<1	<1	<1	<1	1.4	34
3-Mar-10	<1	<1	<1	<1	2.5	33
8-Jun-10	<1	<1	<1	<1	2.9	49
10-Aug-10	<1	<1	<1	<1	2.8	35
6-Oct-10	<1	<1	<1	<1	2.9	29
15-Feb-11	ND	ND	ND	ND	1.8	25

MW-26	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
12-Sep-02	3				ND	
24-Nov-02	0				ND	
28-Mar-03	0			· · ·	0.1	
23-Jun-03	7800				14.5	
15-Aug-03	7400				16.8	
12-Sep-03	2500				2.7	
25-Sep-03	2600				2.5	
29-Oct-03	3100				3.1	
8-Nov-03	3000				2.8	
29-Mar-04	NA				NA	
22-Jun-04	NA				NA	
17-Sep-04	1400				0.53	
17-Nov-04	300				0.2	
16-Mar-05	310				0.3	
30-Mar-05	230				0.2	
25-May-05	442	NA	NA NA	NA	0.2	NA
31-Aug-05	960	<5	5.4	<5	0.2	NA
1-Dec-05	1000	<50	<50	<50	0.3	NA
9-Mar-06	1100	<50	<50	<50	0.2	52
14-Jun-06	830	<50	<50	<50	0.2	52
20-Jul-06	2170	<50	<50	<50	1.4	65
8-Nov-06	282	<1	<1	2.8	0.3	54
28-Feb-07	570	<1	<1	5.5	0.5	56
27-Jun-07	300	<1	<1	13	0.4	49
15-Aug-07	1400	<1	<1	36	1	57
10-Oct-07	2000	<1	<1	14	0.6	57
26-Mar-08	930	<1	<1	40	0.1	49
25-Jun-08	1300	<1	<1	53	0.56	57
10-Sep-08	630	<1	<1	24	0.24	44
15-Oct-08	1700	<1	<1	100	0.65	64
4-Mar-09	950	<1	<1	51	0.4	49
24-Jun-09	410	<1	<1	12	0.2	48
15-Sep-09	850	<1	<1	30	0.1	46
14-Dec-09	1100	<1	<1	40	2.3	60
17-Feb-10	780	<1	<1	19	0.2	57
9-Jun-10	1900	<1	<1	28	1.1	58
16-Aug-10	2200	<1	<1	21	0.6	49
11-Oct-10	970	<1	<1	6.5	0.7	65
23-Feb-11	450	ND	ND	3.6	0.5	57

TW4-16	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
12-Sep-02	140				ND	
24-Nov-02	200				ND	
28-Mar-03	260				ND	
23-Jun-03	370				ND	
12-Sep-03	350				ND	1
8-Nov-03	400				ND	
29-Mar-04	430				ND	
22-Jun-04	530				ND	
17-Sep-04	400				ND	
17-Nov-04	350				ND	
16-Mar-05	240				ND	
25-May-05	212	NA	NA	NA	<0.1	NA
31-Aug-05	85	<1	3.2	43	<0.1	NA
1-Dec-05	14	<2.5	2.6	5.9	1.4	NA
9-Mar-06	39.0	<1	1.1	21	3	60
14-Jun-06	13.0	<1	2.4	8.9	1.9	55
20-Jul-06	5.2	<1	<1	2.7	2.7	60
8-Nov-06	13.6	<1	<1	9.2	5.6	62
28-Feb-07	8.7	<1	<1	6.5	12.3	79
27-Jun-07	2.6	<1	<1	1.8	9.9	75
15-Aug-07	7.1	<1	<1	5.1	5.4	66
10-Oct-07	1.4	<1	<1	<1	4.4	69
26-Mar-08	11.0	<1	<1	26	ND	52
25-Jun-08	<1	<1	<1	<1	1.46	58
10-Sep-08	10	<1	<1	14	10.5	71
15-Oct-08	3.9	<1	<1	6.6	9.82	89
4-Mar-09	<1	<1	<1	<1	9.6	78
24-Jun-09	<1	<1	<1	<1	8.9	76
15-Sep-09	<1	<1	<1	- <1	8.8	79
17-Dec-09	<1	<1	<1	<1	5.2	76
24-Feb-10	<1	<1	<1	<1	4.2	77
9-Jun-10	2.1	<1	<1	<1	4.7	64
24-Aug-10	4.3	<1	<1	<1	4.6	72
6-Oct-10	3.0	<1	<1	<1	3.3	72
22-Feb-11	15.0	ND	ND	ND	7	86

.

MW-32	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
12-Sep-02	1.6				ND	
24-Nov-02	ND				ND	
28-Mar-03	ND				ND	
23-Jun-03	ND				ND	
12-Sep-03	ND				ND	
8-Nov-03	ND				ND	
29-Mar-04	ND				ND	
22-Jun-04	ND				ND	
17-Sep-04	ND				ND	
17-Nov-04	ND				ND	
16-Mar-05	ND				ND	
30-Mar-05	ND				ND	
25-May-05	<1	NA	NA	NA	<0.1	NA
31-Aug-05	<1	<1	3.2	<1	<0.1	NA
1-Dec-05	<1	<1	<1	<1	<0.1	NA
9-Mar-06	<1	<1	<1	<1	<0.1	32
14-Jun-06	<1	<1	3.5	<1	<0.1	30
20-Jul-06	<1	<1	1.8	<1	<0.1	32
8-Nov-06	<1	<1	1.5	<1	<0.1	31
28-Feb-07	<1	<1	<1	<1	<0.1	32
27-Jun-07	<1	<1	<1	<1	<0.1	32
15-Aug-07	<1	<1	<1	<1	<0.1	31
10-Oct-07	<1	<1	<1	<1	<0.1	32
26-Mar-08	<1	<1	<1	<1	<0.1	31
25-Jun-08	<1	<1	<1	<1	< 0.05	29
10-Sep-08	<1	<1	<1	<1	< 0.05	30
15-Oct-08	<1	<1	<1	<1	< 0.05	26
4-Mar-09	<1	<1	<1	<1	<0.1	30
24-Jun-09	<1	<1	<1	<1	<0.1	31
15-Sep-09	<1	<1	<1	<1	<0.1	33
16-Dec-09	<1	<1	<1	<1	<0.1	34
17-Feb-10	<1	<1	<1	<1	< 0.1	38
14-Jun-10	<1	<1	<1	<1	<0.1	32
16-Aug-10	<1	<1	<1	<1	<0.1	28
6-Oct-10	<1	<1	<1	<1	<0.1	24
23-Feb-11	ND	ND	ND	ND	ND	40

.

TW4-18	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
12-Sep-02	440				1.49	
24-Nov-02	240				13.3	
28-Mar-03	160	· · · ·			13.1	
23-Jun-03	110				19	
12-Sep-03	68.0	· · · · · ·			19.9	
9-Nov-03	84.0				20.7	
29-Mar-04	90.0				14	
22-Jun-04	82.0				12.2	
17-Sep-04	38.0				14.5	
17-Nov-04	51.0				17.3	
16-Mar-05	38.0				14.1	
25-May-05	29.8	NA	NA	NA	12.9	NA
31-Aug-05	39	<1	2.8	<1	13.3	NA
1-Dec-05	14	<1	1.1	<1	7.3	NA
9-Mar-06	12.0	<1	1.1	<1	5.9	5.9
14-Jun-06	12.0	<1	1.6	<1	4.7	35
20-Jul-06	10.8	<1	2.7	<1	6.1	35
8-Nov-06	139	<1	<1	<1	8.7	34
28-Feb-07	9.2	<1	<1	<1	5.1	30
27-Jun-07	8.0	<1	<1	<1	4.9	28
15-Aug-07	8.9	<1	<1	<1	5	32
10-Oct-07	7.4	<1	<1	<1	4.4	27
26-Mar-08	6.4	<1	<1	<1	0.7	23
25-Jun-08	5.7	<1	<1	<1	4.55	23
10-Sep-08	8.0	<1	<1	<1	4.68	26
15-Oct-08	9.4	<1	<1	<1	5,15	30
4-Mar-09	11.0	<1	<1	<1	5.2	29
24-Jun-09	16.0	<1	<1	<1	6.2	30
15-Sep-09	13.0	<1	<1	<1	5.9	26
22-Dec-09	8.2	<1	<1	<1	5.4	30
24-Feb-10	69.0	<1	<1	<1	5.1	41
9-Jun-10	29.0	<1	<1	<1	9	35
12-Aug-10	29.0	<1	<1	<1	9	37
13-Oct-10	30.0	<1	<1	<1	10	50
22-Feb-11	39.0	ND	ND	ND	10	52

TW4-19	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
12-Sep-02	7700				47.6	
24-Nov-02	5400	·			42	
28-Mar-03	4200				61.4	
15-May-03	4700				NA	
23-Jun-03	4500				11.4	
15-Jul-03	2400				6.8	
15-Aug-03	2600				4	
12-Sep-03	2500				5.7	
25-Sep-03	4600		· · · · · · · · · · · · · · · · · · ·		9.2	
29-Oct-03	4600				7.7	
9-Nov-03	2600				4.8	
29-Mar-04	NA				NA	
22-Jun-04	NA				NA	
16-Aug-04	7100				9.91	
17-Sep-04	2600				4.5	
17-Nov-04	1800				3.6	
16-Mar-05	2200				5.3	
25-May-05	1200				5.7	
31-Aug-05	1400	<5	<5	<5	4.6	NĀ
1-Dec-05	2800	<50	<50	<50	<0.1	NA
9-Mar-06	1200	<50	<50	<50	4	86
14-Jun-06	1100	<50	<50	<50	5.2	116
20-Jul-06	1120	<50	<50	<50	4.3	123
8-Nov-06	1050	1.6	2.6	<1	4.6	134
28-Feb-07	1200	1.3	<1	<1	4	133
27-Jun-07	1800				2.3	
15-Aug-07	1100	1.9	<1	<1	4.1	129
10-Oct-07	1100	1.9	<1	<1	4	132
26-Mar-08	1800	2.9	<1	<1	2.2	131
25-Jun-08	1000	1	<1	<1	2.81	128
10-Sep-08	3600	8.6	<1	<1	36.2	113
15-Oct-08	4200	12	<1	<1	47.8	124
4-Mar-09	1100	1.2	<1	<1	3.2	127
24-Jun-09	990	1.2	<1	<1	2.4	132
15-Sep-09	6600	15	<1	<1	0.1	43
14-Dec-09	4700	16	<1	<1	26.7	124
17-Feb-10	940	1.3	<1	<1	2	144
9-Jun-10	1800	4.2	<1	<1	4.4	132
16-Aug-10	2000	4.9	<1	<1	5.9	142

11-Oct-10	1200	1.3	<1	<1	2.7	146
17-Feb-11	3400	17	ND	ND	17	135

.

,

r.

TW4-20	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
25-May-05	39000	NA	NA	NA	10.1	NA
31-Aug-05	3800	<10	<10	<10	2.9	NA
1-Dec-05	19000	<250	<250	<250	1.8	NA
9-Mar-06	9200	<500	<500	<500	3.8	120
14-Jun-06	61000	<500	<500	<500	9.4	235
20-Jul-06	5300	<1000	<1000	<1000	2.9	134
8-Nov-06	11000	7.1	1.9	2.2	3.5	124
28-Feb-07	4400	3.1	<1	1.1	4.2	124
27-Jun-07	1800	2.2	<1	<1	2.3	112
15-Aug-07	5200	3.5	<1	1.8	2.1	117
10-Oct-07	9000	6.8	<1	1.9	5.6	170
26-Mar-08	13000	9	<1	1.5	0.9	132
25-Jun-08	30000	13	<1	1.2	7.96	191
10-Sep-08	21000	15	<1	3.7	4.44	156
15-Oct-08	NA	NA	NA	NA	5.51	166
4-Mar-09	8200	5.7	<1	5.2	5.1	164
24-Jun-09	6800	4.9	<2	4.2	2.9	164
15-Sep-09	13000	8.4	<2	4.4	3.3	153
14-Dec-09	15000	14	<1	3	5.3	187
17-Feb-10	3500	2.7	<1	3.2	2	179
14-Jun-10	18000	11	<1	3.7	5.6	200
16-Aug-10	15000	12	<1	2.2	5.3	196
11-Oct-10	24000	20	<1	5.5	4.6	203
23-Feb-11	31000	27	ND	19	4.4	220

TW4-21	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
25-May-05	192	NA	NA	NA	14.6	NA
31-Aug-05	78	<5	<5	<5	10.1	NA
1-Dec-05	86	<1	1.0	<1	9.6	NA
9-Mar-06	120	<2.5	<2.5	<2.5	8.5	347
14-Jun-06	130	<2.5	<2.5	<2.5	10.2	318
20-Jul-06	106	<2.5	<2.5	<2.5	8.9	357
8-Nov-06	139	2	<1	<1	8.7	296
28-Feb-07	160	1.8	<1	<1	8.7	306
27-Jun-07	300	5.8	<1	<1	8.6	327
15-Aug-07	140	<1	<1	<1	8.6	300
10-Oct-07	120	<1	<1	<1	8.3	288
26-Mar-08	380	7	<1	<1	14.3	331
25-Jun-08	160	1.7	<1	<1	8.81	271
10-Sep-08	120	1.6	<1	<1	7.57	244
15-Oct-08	170	2	<1	<2	8.00	284
11-Mar-09	180	<1	<1	<1	8.3	279
24-Jun-09	200	<1	<1	<1	8.1	291
15-Sep-09	140	<1	<1	<1	9.2	281
22-Dec-09	160	<1	<1	<1	8.4	256
25-Feb-10	170	<1	<1	<1	8.4	228
10-Jun-10	210	1.2	<1	<1	12	266
12-Aug-10	390	9.2	<1	<1	14	278
13-Oct-10	200	1.2	<1	<1	7	210
22-Feb-11	230	1.2	ND	ND	9	303

TW4-22	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
25-May-05	340	NA	NA	NA	18.2	NA
31-Aug-05	290	<5	<5	<5	15.7	NA
1-Dec-05	320	<5	<5	<5	15.1	NA
9-Mar-06	390	<10	<10	<10	15.3	236
14-Jun-06	280	<10	<10	<10	14.3	221
20-Jul-06	864	<10	<10	<10	14.5	221
8-Nov-06	350	<1	1.6	<1	15.9	236
28-Feb-07	440	<1	<1	<1	20.9	347
27-Jun-07	740	<1	<1	<1	19.3	273
15-Aug-07	530	<1	<1	<1	19.3	259
10-Oct-07	440	<1	<1	<1	18.8	238
26-Mar-08	1400	<1	<1	<1	39.1	519
25-Jun-08	1200	<1	<1	<1	41.9	271
10-Sep-08	6300	1.3	<1	<1	38.7	524
15-Oct-08	630	<2	<2	<2	36.3	539
11-Mar-09	390	<1	<1	<1	20.7	177
24-Jun-09	730	<1	<1	<1	20.6	177
15-Sep-09	2300	<1	<1	<1	40.3	391
29-Dec-09	380	<1	<1	<1	17.8	175
3-Mar-10	2200	<1	<1	<1	36.6	427
15-Jun-10	540	<1	<1	<1	19	134
24-Aug-10	340	<1	<1	<1	15	130
13-Oct-10	340	<1	<1	<1	16	134
23-Feb-11	1300	ND	ND	ND	18	114

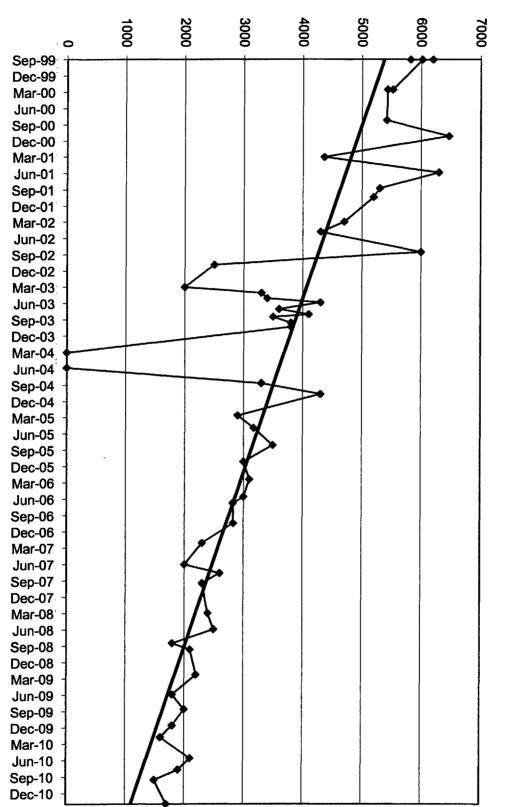
TW4-23	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
27-Jun-07	<1	<1	<1	<1	<0.1	47
15-Aug-07	<1	<1	<1	<1	<0.1	46
10-Oct-07	<1	<1	<1	<1	<0.1	43
26-Mar-08	<1	<1	<1	<1	<0.1	41
25-Jun-08	<1	<1	<1	<1	< 0.05	41
10-Sep-08	<1	<1	<1	<1	< 0.05	35
15-Oct-08	<2	<2	<2	<2	< 0.05	51
4-Mar-09	<1	<1	<1	<1	<0.1	41
24-Jun-09	<1	<1	<1	<1	<0.1	43
15-Sep-09	<1	<1	<1	<1	<0.1	43
16-Dec-09	<1	<1	<1	<1	<0.1	37
24-Feb-10	<1	<1	<1	<1	<0.1	45
8-Jun-10	<1	<1	<1	<1	<0.1	40
10-Aug-10	<1	<1	<1	<1	<0.1	40
5-Oct-10	<1	<1	<1	<1	<0.1	34
16-Feb-11	ND	ND	ND	ND	ND	44

TW4-24	Chioroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
27-Jun-07	2.6	<1	<1	<1	26.1	770
15-Aug-07	2.2	<1	<1	<1	29	791
10-Oct-07	1.5	<1	<1	<1	24.7	692
26-Mar-08	1.5	<1	<1	<1	24.4	740
25-Jun-08	1.4	<1	<1	<1	45.3	834
10-Sep-08	2.9	<1	<1	<1	38.4	1180
15-Oct-08	<2	<2	<2	<2	44.6	1130
4-Mar-09	1.4	<1	<1	<1	30.5	1010
24-Jun-09	1.5	<1	<1	<1	30.4	759
15-Sep-09	1.4	<1	<1	<1	30.7	618
17-Dec-09	1.2	<1	<1	<1	28.3	1080
25-Feb-10	1.3	<1	<1	<1	33.1	896
9-Jun-10	1.7	<1	<1	<1	30	639
24-Aug-10	1.8	<1	<1	<1	31	587
6-Oct-10	1.4	<1	<1	<1	31	522
17-Feb-11	1.8	ND	ND	ND	31	1100

TW4-25	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
27-Jun-07	<1	<1	<1	<1	17.1	395
15-Aug-07	<1	<1	<1	<1	16.7	382
10-Oct-07	<1	<1	<1	<1	17	356
26-Mar-08	<1	<1	<1	<1	18.7	374
25-Jun-08	<1	<1	<1	<1	22.1	344
10-Sep-08	<1	<1	<1	<1	18.8	333
15-Oct-08	<2	<2	<2	<2	21.3	366
4-Mar-09	<1	<1	<1	<1	15.3	332
24-Jun-09	<1	<1	<1	<1	15.3	328
15-Sep-09	<1	<1	<1	<1	3.3	328
16-Dec-09	<1	<1	<1	<1	14.2	371
23-Feb-10	<1	<1	<1	<1	14.4	296
8-Jun-10	<1	<1	<1	<1	16	306
10-Aug-10	<1	<1	<1	<1	14	250
5-Oct-10	<1	<1	<1	<1	15	312
16-Feb-11	ND	ND	ND	ND	15	315

TW4-26	Chloroform (ug/l)	Carbon Tetrachloride (ug/l)	Chloromethane (ug/l)	Methylene Chloride (ug/l)	Nitrate (mg/l)	Chloride (mg/l)
15-Jun-10	13	<1	<1	<1	7.9	33
11-Aug-10	5	<1	<1	<1	9	17
6-Oct-10	5.4	<1	<1	<1	9.6	22
22-Feb-11	2.0	ND	ND	ND	10	30

•

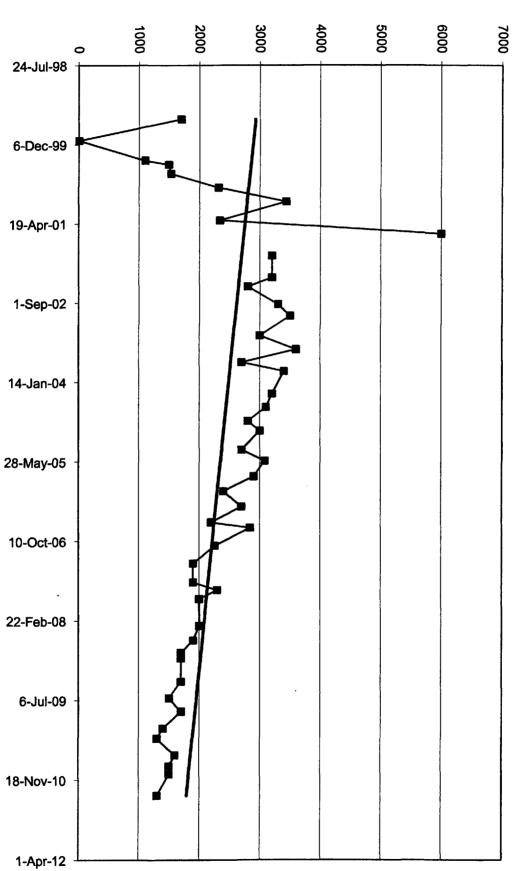

Tab L

÷

.

.

Chloroform Concentration Trend Graphs

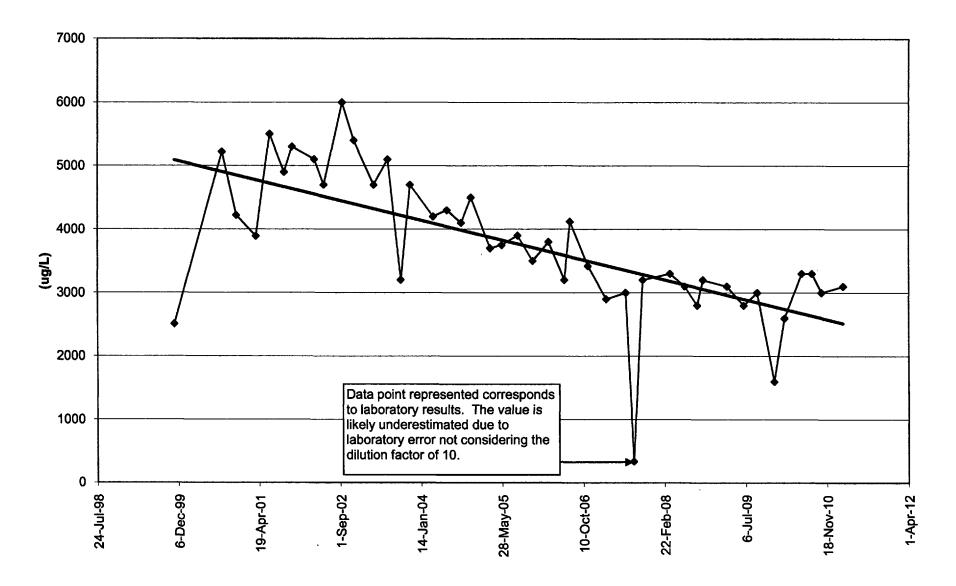

MW4-Chloroform Values

ľ

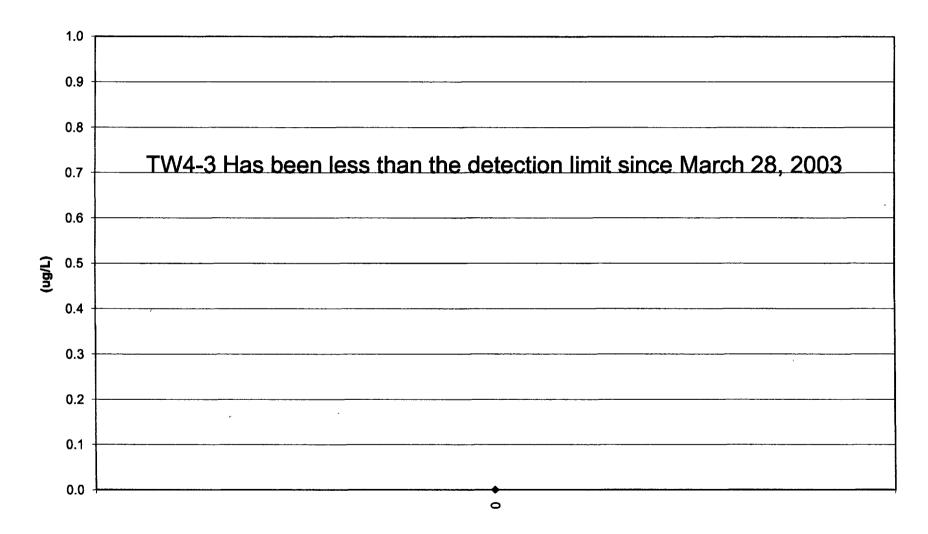
¢

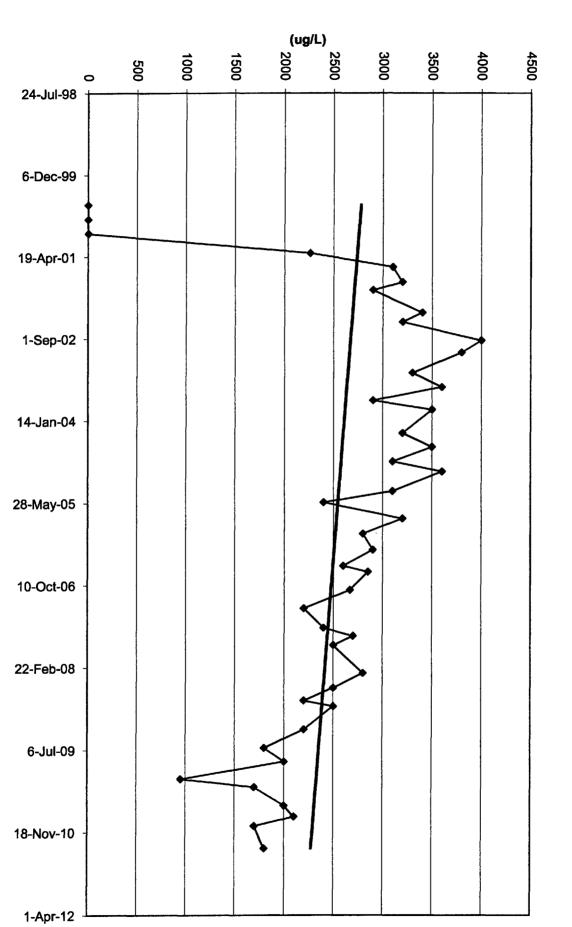
(ug/L)

J

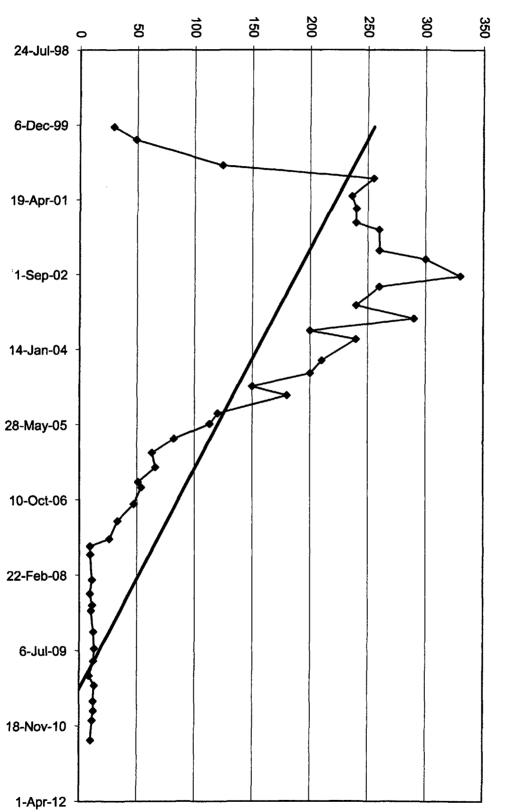


Į

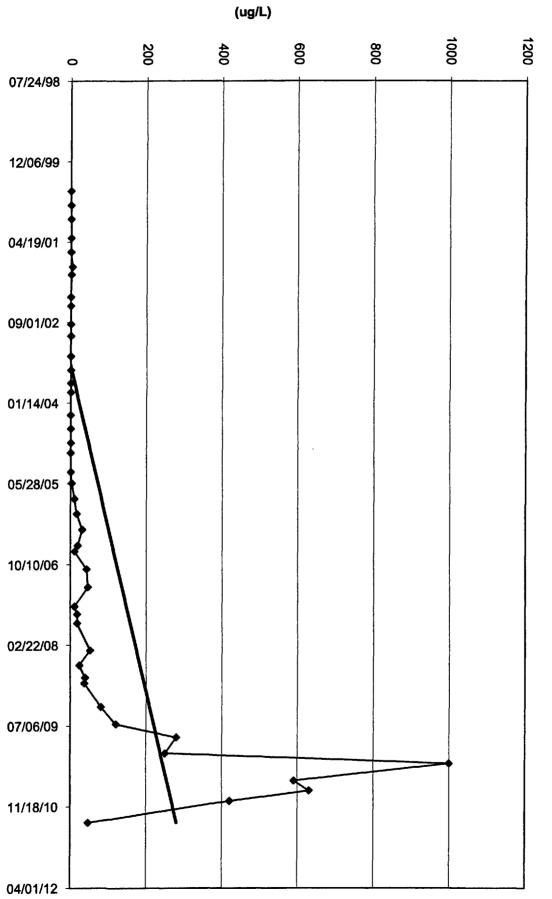

TW4-1 Chloroform Values

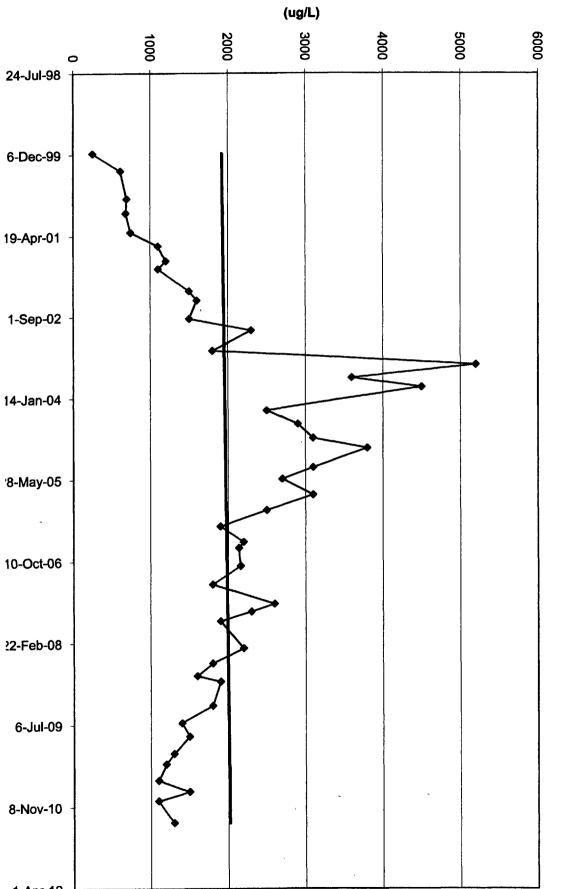

(ug/L)

TW4-2 Chloroform Values



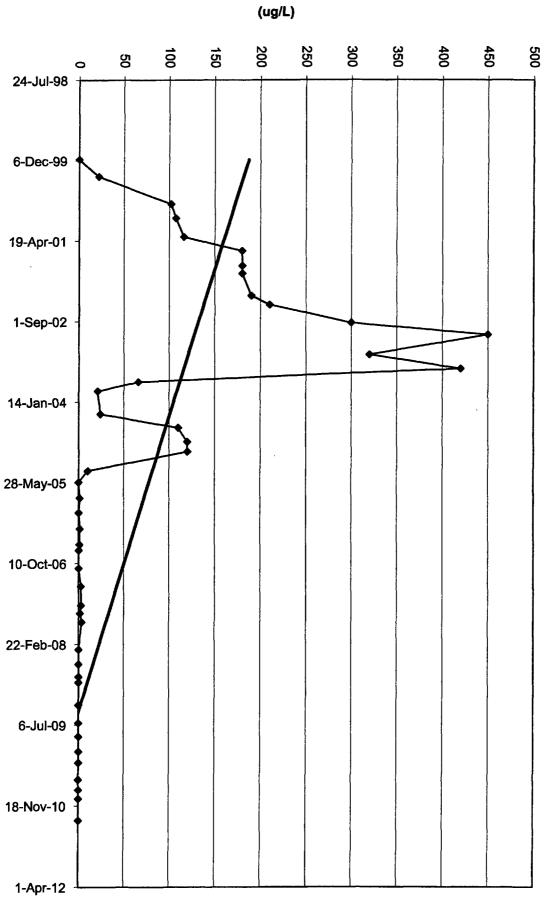
TW-4-3 Chloroform Values

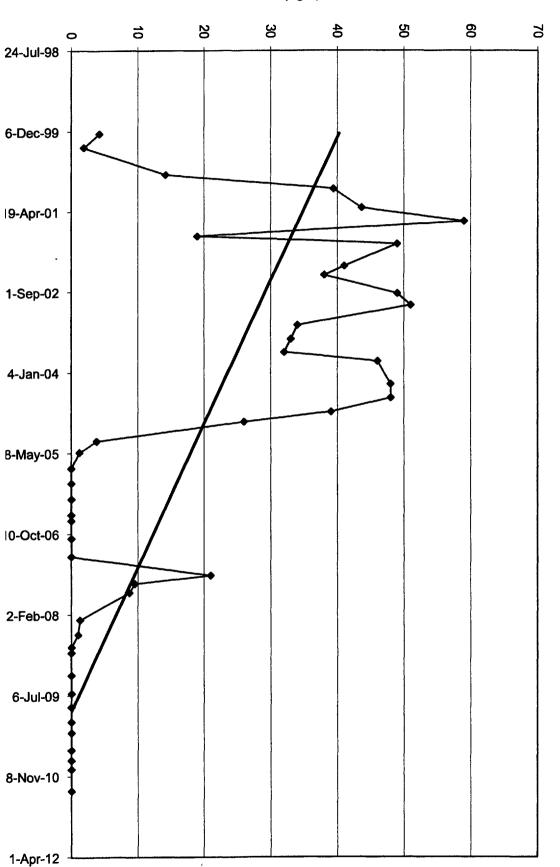



ļ

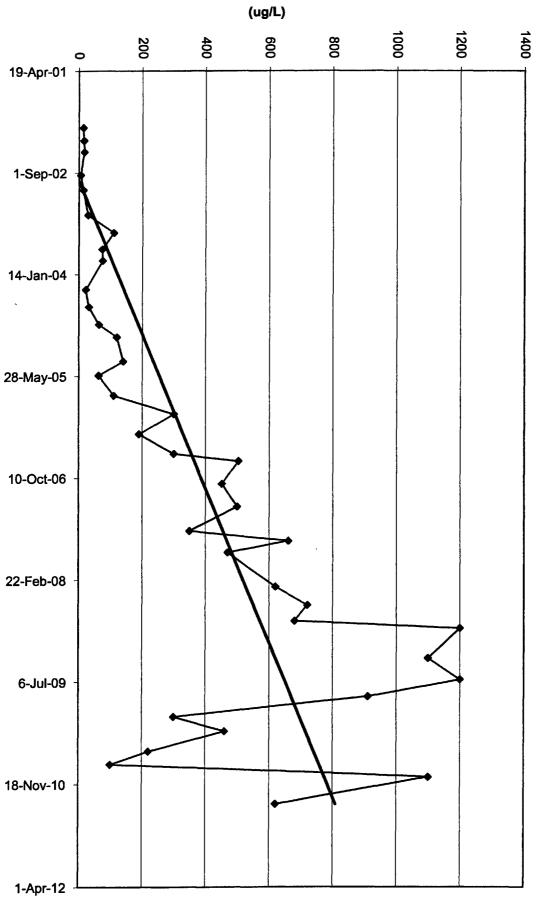
TW4-5 Chloroform Values

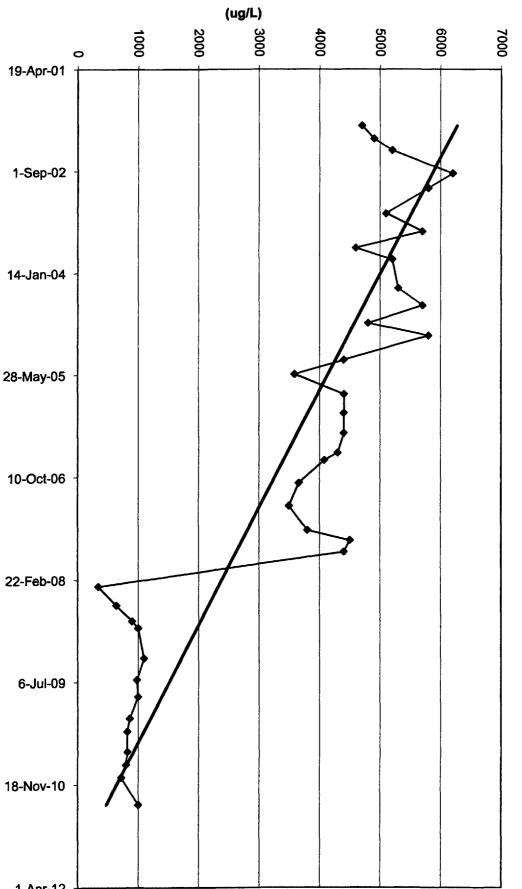
(ug/L)

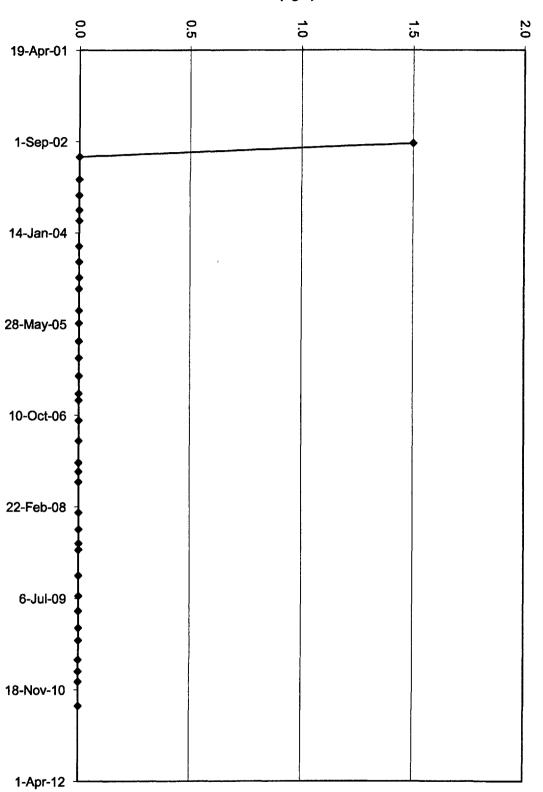

TW4-6 Chloroform Values

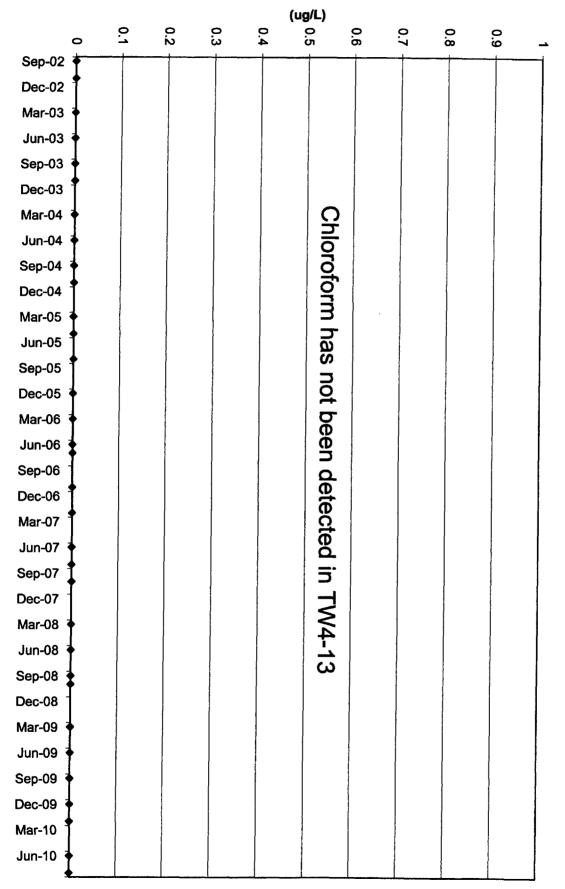


TW4-7 Chloroform Values


1-Apr-12

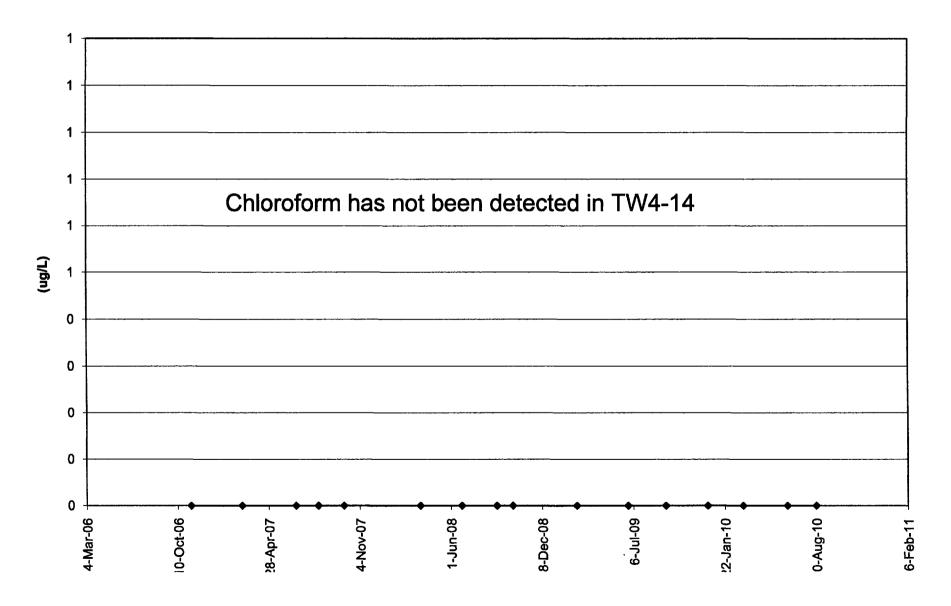



TW4-9 Chloroform Values


TW4-11 Chloroform Values

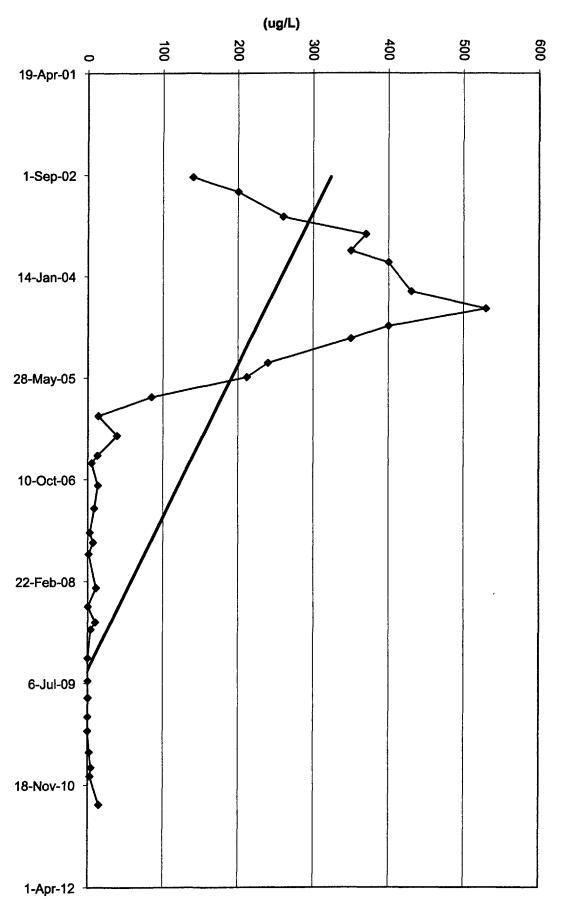
•

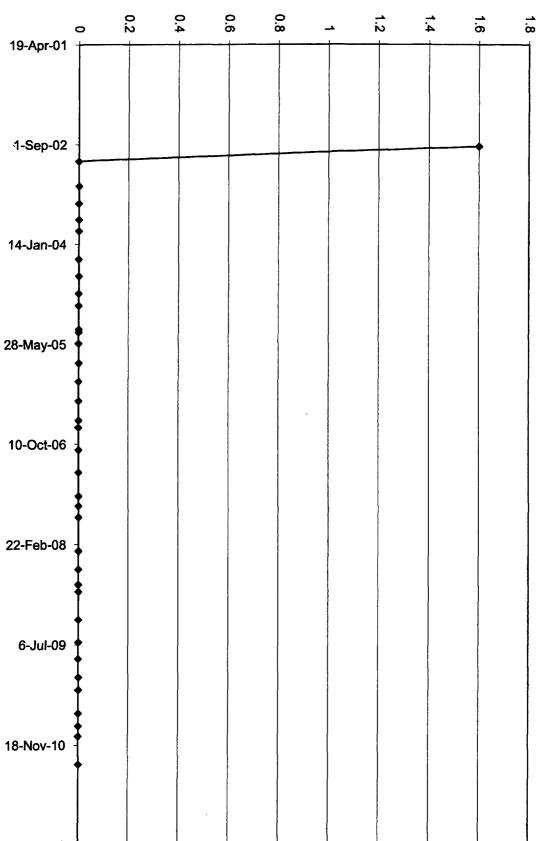
TW4-12 Chloroform Values


(ug/L)

•

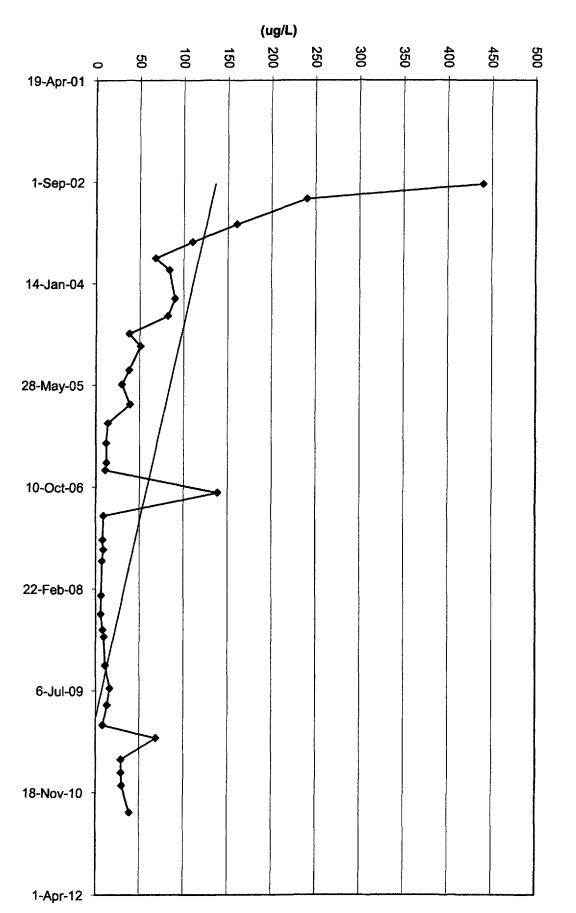
TW4-13 Chloroform Values


TW4-14 Chloroform Values

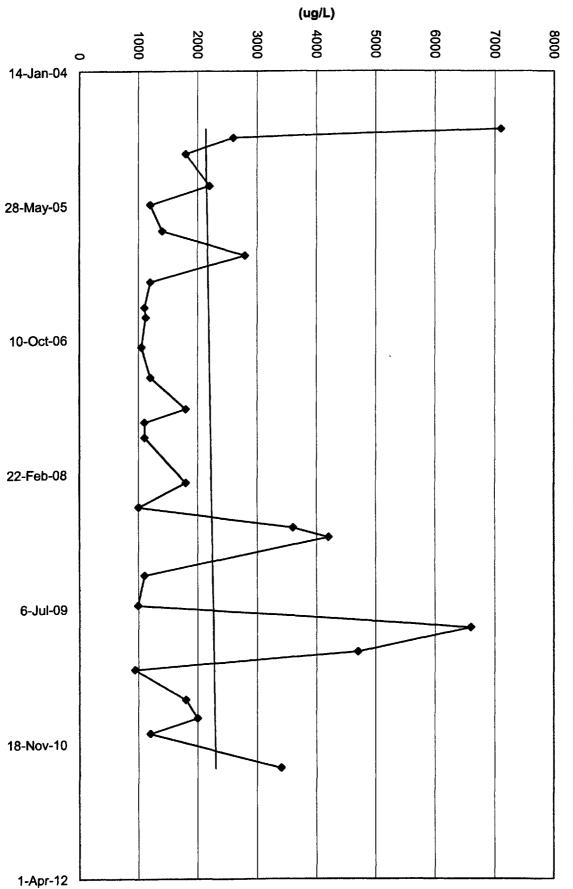


MW-26 Chloroform Values

(ug/L)

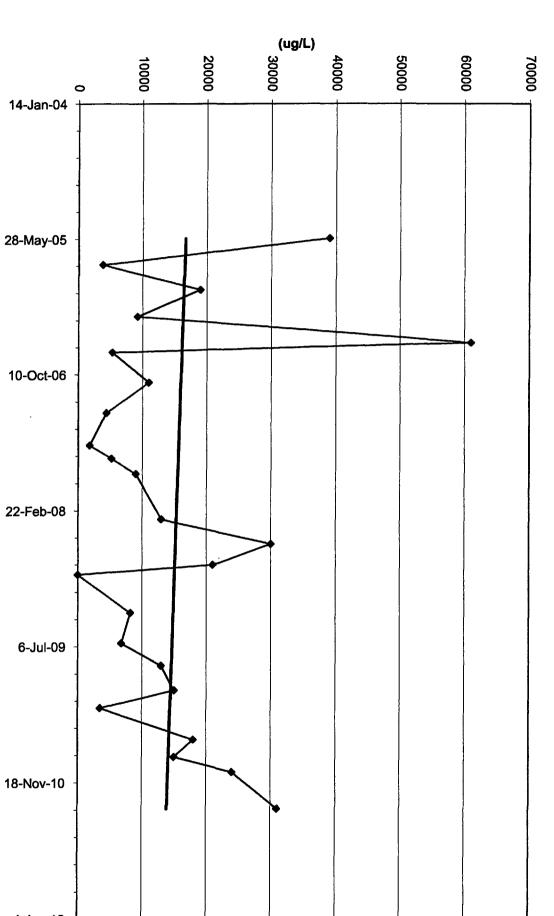


MW-32 Chloroform Values


1-Apr-12

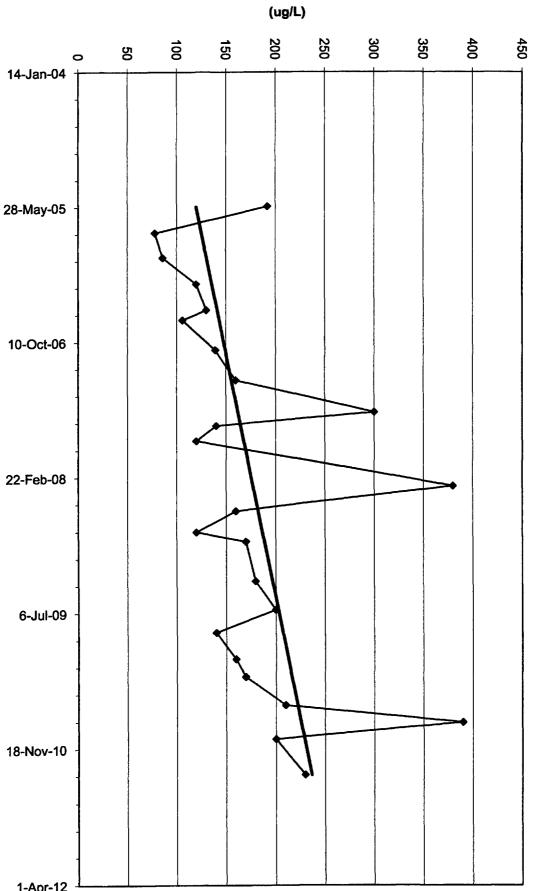
Ï

(ug/L)



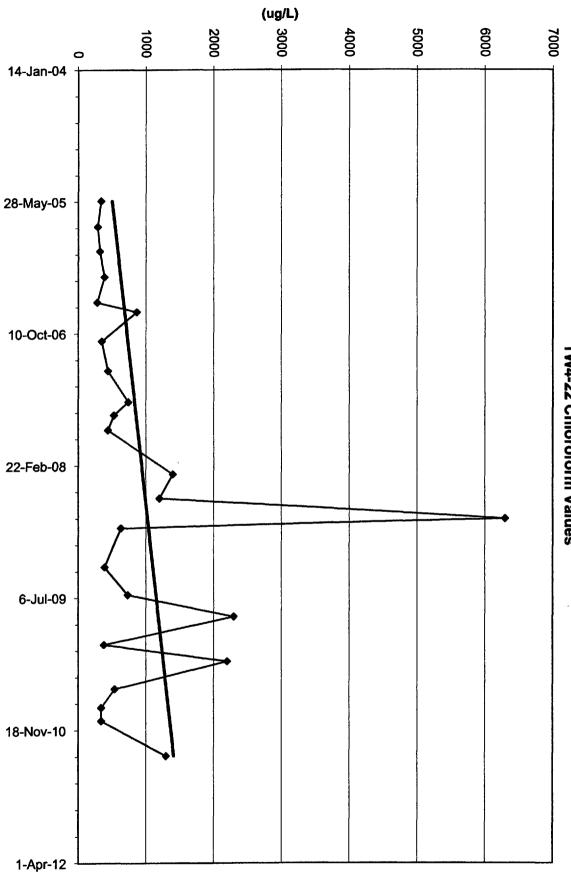
TW4-18 Chloroform Values

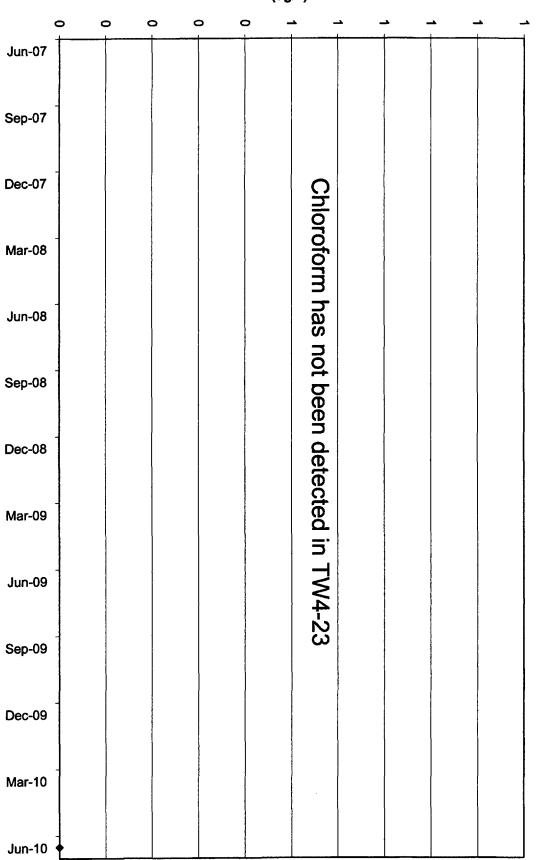
ĺ


TW4-19 Chloroform Values

ť,

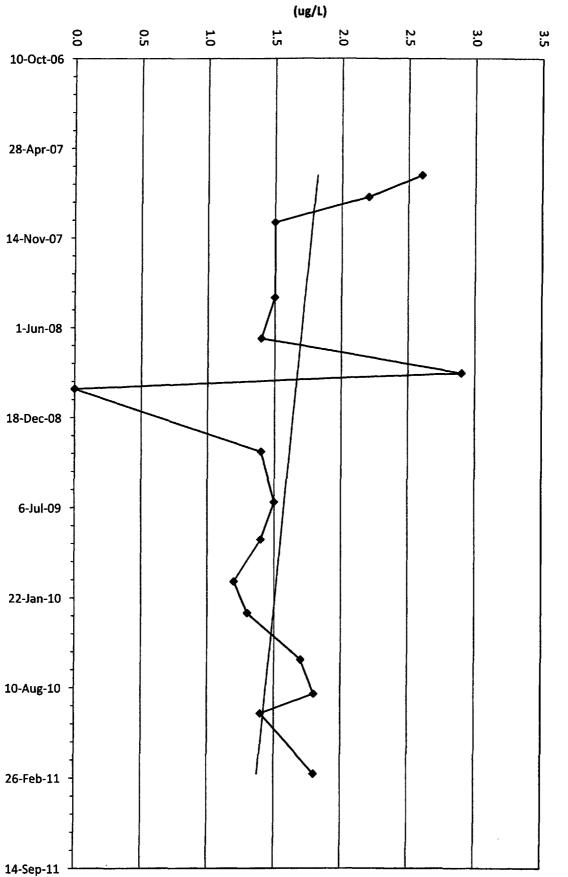
TW4-20 Chloroform Values


.

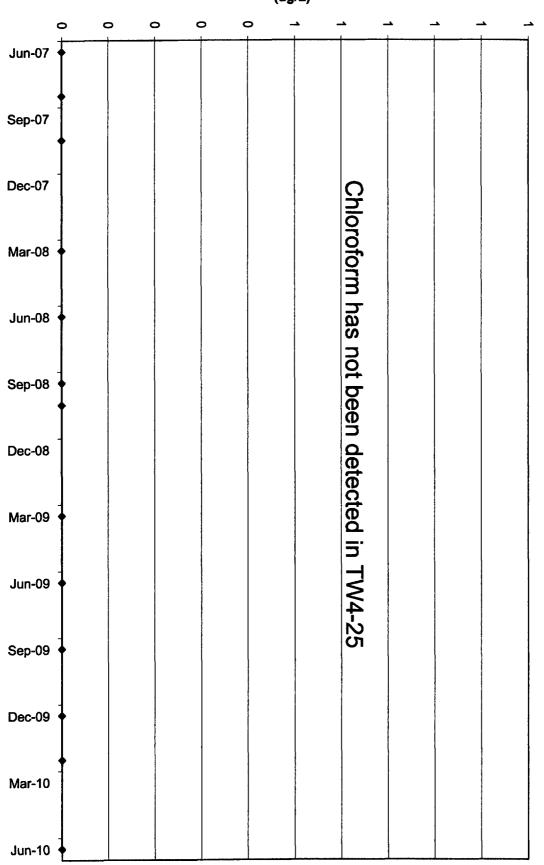

TW4-21 Chloroform Values

I

Ĺ



TW4-22 Chloroform Values



ŝ

TW4-23 Chloroform Values

TW4-24 Chloroform Values

ł

TW4-25 Chloroform Values

Tab M

CSV Transmittal Letter

J

Kathy Weinel

From:Kathy WeinelSent:Monday, May 16, 2011 3:11 PMTo:rlundberg@utah.govCc:Jo Ann Tischler; David FrydenlundSubject:Transmittal of CSV Files White Mesa Mill 2011 Q1 Chloroform MonitoringAttachments:C11020540(1).CSV; C11020714(1).CSV

Dear Mr. Lundberg,

Attached to this e-mail is an electronic copy of laboratory results for chloroform monitoring conducted at the White Mesa Mill during the first quarter of 2011, in Comma Separated Value (CSV) format.

Please contact me at 303-389-4134 if you have any questions on this transmittal.

Yours Truly

Kathy Weinel Denison Mines (USA) Corp. Quality Assurance Manager